ﻻ يوجد ملخص باللغة العربية
Most models used to predict or fit exoplanet transmission spectra do not include all the effects of atmospheric refraction. Namely, the angular size of the star with respect to the planet can limit the lowest altitude, or highest density and pressure, probed during primary eclipses, as no rays passing below this critical altitude can reach the observer. We discuss this geometrical effect of refraction for all exoplanets, and tabulate the critical altitude, density and pressure for an exoplanet identical to Earth with a 1 bar N2/O2 atmosphere, as a function of both the incident stellar flux (Venus, Earth, and Mars-like) at the top of the atmosphere, and the spectral type (O5-M9) of the host star. We show that such a habitable exo-Earth can be probed to a surface pressure of 1 bar only around the coolest stars. We present 0.4-5.0 micron model transmission spectra of Earths atmosphere viewed as a transiting exoplanet, and show how atmospheric refraction modifies the transmission spectrum depending on the spectral type of the host star. We demonstrate that refraction is another phenomenon that can potentially explain flat transmission spectra over some spectral regions.
Flowing water and brine have been proposed to cause seasonally reappearing dark streaks called recurring slope lineae (RSL) on steep warm slopes on Mars, along with other formation mechanisms that do not involve water. This study aims to examine whet
We discuss here a lunar impact flash recorded during the total lunar eclipse that occurred on 2019 January 21, at 4h 41m 38.09 +- 0.01 s UT. This is the first time ever that an impact flash is unambiguously recorded during a lunar eclipse and discuss
An important goal within the quest for detecting an Earth-like extrasolar planet, will be to identify atmospheric gaseous bio-signatures. Observations of the light transmitted through the Earths atmosphere, as for an extrasolar planet, will be the fi
The field of extrasolar planets has rapidly expanded to include the detection of planets with masses smaller than that of Uranus. Many of these are expected to have little or no hydrogen and helium gas and we might find Earth analogs among them. In t
Hot super-Earths likely possess minimal atmospheres established through vapor saturation equilibrium with the ground. We solve the hydrodynamics of these tenuous atmospheres at the surface of Corot-7b, Kepler 10b and 55 Cnc-e, including idealized tre