ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-Dimensional General Relativistic Radiation Magnetohydrodynamical Simulation of Super-Eddington Accretion, using a new code HARMRAD with M1 Closure

235   0   0.0 ( 0 )
 نشر من قبل Alexander Tchekhovskoy
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Black hole (BH) accretion flows and jets are dynamic hot relativistic magnetized plasma flows whose radiative opacity can significantly affect flow structure and behavior. We describe a numerical scheme, tests, and an astrophysically relevant application using the M1 radiation closure within a new three-dimensional (3D) general relativistic (GR) radiation (R) magnetohydrodynamics (MHD) massively parallel code called HARMRAD. Our 3D GRRMHD simulation of super-Eddington accretion (about $20$ times Eddington) onto a rapidly rotating BH (dimensionless spin $j=0.9375$) shows sustained non-axisymmemtric disk turbulence, a persistent electromagnetic jet driven by the Blandford-Znajek effect, and a total radiative output consistently near the Eddington rate. The total accretion efficiency is of order $20%$, the large-scale electromagnetic jet efficiency is of order $10%$, and the total radiative efficiency that reaches large distances remains low at only order $1%$. However, the radiation jet and the electromagnetic jet both emerge from a geometrically beamed polar region, with super-Eddington isotropic equivalent luminosities. Such simulations with HARMRAD can enlighten the role of BH spin vs. disks in launching jets, help determine the origin of spectral and temporal states in x-ray binaries, help understand how tidal disruption events (TDEs) work, provide an accurate horizon-scale flow structure for M87 and other active galactic nuclei (AGN), and isolate whether AGN feedback is driven by radiation or by an electromagnetic, thermal, or kinetic wind/jet. For example, the low radiative efficiency and weak BH spin-down rate from our simulation suggest that BH growth over cosmological times to billions of solar masses by redshifts of $zsim 6-8$ is achievable even with rapidly rotating BHs and ten solar mass BH seeds.



قيم البحث

اقرأ أيضاً

X-ray reverberation is a powerful technique which maps out the structure of the inner regions of accretion disks around black holes using the echoes of the coronal emission reflected by the disk. While the theory of X-ray reverberation has been devel oped almost exclusively for standard thin disks, recently reverberation lags have been observed from likely super-Eddington accretion sources such as the jetted tidal disruption event Swift J1644+57. In this paper, we extend X-ray reverberation studies into the super-Eddington accretion regime, focusing on investigating the lags in the Fe K{alpha} line region. We find that the coronal photons are mostly reflected by the fast and optically thick winds launched from super-Eddington accretion flow, and this funnel-like reflection geometry produces lag-frequency and lag-energy spectra with unique characteristics. The lag-frequency spectra exhibits a step-function like decline near the first zero-crossing point. As a result, the shape of the lag-energy spectra remains almost independent of the choice of frequency bands and linearly scales with the black hole mass for a large range of parameter spaces. Not only can these morphological differences be used to distinguish super-Eddington accretion systems from sub-Eddington systems, they are also key for constraining the reflection geometry and extracting parameters from the observed lags. When explaining the X-ray reverberation lags of Swift J1644+57, we find that the super-Eddington disk geometry is preferred over the thin disk, for which we obtain a black hole mass of 5-6 million solar masses and a coronal height around 10 gravitational radii by fitting the lag spectra to our modeling.
We present the results of a global, three-dimensional magnetohydrodynamics simulation of an accretion disk with a rotating, weakly magnetized central star. The disk is threaded by a weak, large-scale poloidal magnetic field, and the central star has no strong stellar magnetosphere initially. Our simulation investigates the structure of the accretion flows from a turbulent accretion disk onto the star. The simulation reveals that fast accretion onto the star at high latitudes occurs even without a stellar magnetosphere. We find that the failed disk wind becomes the fast, high-latitude accretion as a result of angular momentum exchange mediated by magnetic fields well above the disk, where the Lorentz force that decelerates the rotational motion of gas can be comparable to the centrifugal force. Unlike the classical magnetospheric accretion scenario, fast accretion streams are not guided by magnetic fields of the stellar magnetosphere. Nevertheless, the accretion velocity reaches the free-fall velocity at the stellar surface due to the efficient angular momentum loss at a distant place from the star. This study provides a possible explanation why Herbig Ae/Be stars whose magnetic fields are generally not strong enough to form magnetospheres also show indications of fast accretion. A magnetically driven jet is not formed from the disk in our model. The differential rotation cannot generate sufficiently strong magnetic fields for the jet acceleration because the Parker instability interrupts the field amplification.
We present a new radiative transfer method (SPH-M1RT) that is coupled dynamically with smoothed particle hydrodynamics (SPH). We implement it in the (task-based parallel) SWIFT galaxy simulation code but it can be straightforwardly implemented in oth er SPH codes. Our moment-based method simultaneously solves the radiation energy and flux equations in SPH, making it adaptive in space and time. We modify the M1 closure relation to stabilize radiation fronts in the optically thin limit. We also introduce anisotropic artificial viscosity and high-order artificial diffusion schemes, which allow the code to handle radiation transport accurately in both the optically thin and optically thick regimes. Non-equilibrium thermo-chemistry is solved using a semi-implicit sub-cycling technique. The computational cost of our method is independent of the number of sources and can be lowered further by using the reduced speed of light approximation. We demonstrate the robustness of our method by applying it to a set of standard tests from the cosmological radiative transfer comparison project of Iliev et al. The SPH-M1RT scheme is well-suited for modelling situations in which numerous sources emit ionising radiation, such as cosmological simulations of galaxy formation or simulations of the interstellar medium.
We report on recent upgrades to our general relativistic radiation-magnetohydrodynamics code, Cosmos++, which expands the two-moment, $bf{M}_1$, radiation treatment from grey to multi-frequency transport, including Doppler and gravitational frequency shifts. The solver accommodates either photon (Bose-Einstein) or neutrino (Fermi-Dirac) statistical distribution functions with absorption, emission, and elastic scattering processes. An implicit scheme is implemented to simultaneously solve the primitive inversion problem together with the radiation-matter coupling source terms, providing stability over a broad range of opacities and optical depths where the interactions terms can be stiff. We discuss our formulations and numerical methods, and validate our methods against a wide variety of test problems spanning optically thin to thick regimes in flat, weakly curved, and strongly curved spacetimes.
90 - Jeongbhin Seo 2021
In an attempt to investigate the structures of ultra-relativistic jets injected into the intracluster medium (ICM) and the associated flow dynamics, such as shocks, velocity shear, and turbulence, we have developed a new special relativistic hydrodyn amic (RHD) code in the Cartesian coordinates, based on the weighted essentially non-oscillatory (WENO) scheme. It is a finite difference scheme of high spatial accuracy, which has been widely employed for solving hyperbolic systems of conservation equations. The code is equipped with different WE
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا