ترغب بنشر مسار تعليمي؟ اضغط هنا

A Three-dimensional Simulation of a Magnetized Accretion Disk: Fast Funnel Accretion onto a Weakly Magnetized Star

70   0   0.0 ( 0 )
 نشر من قبل Shinsuke Takasao
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of a global, three-dimensional magnetohydrodynamics simulation of an accretion disk with a rotating, weakly magnetized central star. The disk is threaded by a weak, large-scale poloidal magnetic field, and the central star has no strong stellar magnetosphere initially. Our simulation investigates the structure of the accretion flows from a turbulent accretion disk onto the star. The simulation reveals that fast accretion onto the star at high latitudes occurs even without a stellar magnetosphere. We find that the failed disk wind becomes the fast, high-latitude accretion as a result of angular momentum exchange mediated by magnetic fields well above the disk, where the Lorentz force that decelerates the rotational motion of gas can be comparable to the centrifugal force. Unlike the classical magnetospheric accretion scenario, fast accretion streams are not guided by magnetic fields of the stellar magnetosphere. Nevertheless, the accretion velocity reaches the free-fall velocity at the stellar surface due to the efficient angular momentum loss at a distant place from the star. This study provides a possible explanation why Herbig Ae/Be stars whose magnetic fields are generally not strong enough to form magnetospheres also show indications of fast accretion. A magnetically driven jet is not formed from the disk in our model. The differential rotation cannot generate sufficiently strong magnetic fields for the jet acceleration because the Parker instability interrupts the field amplification.



قيم البحث

اقرأ أيضاً

285 - Ya.N. Istomin , P. Haensel 2012
The problem of interaction of the rotating magnetic field, frozen to a star, with a thin well conducting accretion disk is solved exactly. It is shown that a disk pushes the magnetic field lines towards a star, compressing the stellar dipole magnetic field. At the point of corotation, where the Keplerian rotation frequency coincides with the frequency of the stellar rotation, the loop of the electric current appears. The electric currents flow in the magnetosphere only along two particular magnetic surfaces, which connect the corotation region and the inner edge of a disk with the stellar surface. It is shown that the closed current surface encloses the magnetosphere. Rotation of a disk is stopped at some distance from the stellar surface, which is 0.55 of the corotation radius. Accretion from a disk spins up the stellar rotation. The angular momentum transferred to the star is determined.
119 - N. Bessolaz 2007
Aims : We re-examine the conditions required to steadily deviate an accretion flow from a circumstellar disc into a magnetospheric funnel flow onto a slow rotating young forming star. Methods : New analytical constraints on the formation of accretion funnels flows due to the presence of a dipolar stellar magnetic field disrupting the disc are derived. The Versatile Advection Code is used to confirm these constraints numerically. Axisymmetric MHD simulations are performed, where a stellar dipole field enters the resistive accretion disc, whose structure is self-consistently computed. Results : The analytical criterion derived allows to predict a priori the position of the truncation radius from a non perturbative accretion disc model. Accretion funnels are found to be robust features which occur below the co-rotation radius, where the stellar poloidal magnetic pressure becomes both at equipartition with the disc thermal pressure and is comparable to the disc poloidal ram pressure. We confirm the results of Romanova et al. 2002 and find accretion funnels for stellar dipole fields as low as 140 G in the low accretion rate limit of $10^{-9} M_odot.yr^{-1}$. With our present numerical setup with no disc magnetic field, we found no evidence of winds, neither disc driven nor X-winds, and the star is only spun up by its interaction with the disc. Conclusions : Weak dipole fields, similar in magnitude to those observed, lead to the development of accretion funnel flows in weakly accreting T Tauri stars. However, the higher accretion observed for most T Tauri stars (${dot M} sim 10^{-8} M_odot.yr^{-1}$) requires either larger stellar field strength and/or different magnetic topologies to allow for magnetospheric accretion.
Aims and Methods. Accretion bursts triggered by the magnetorotational instability (MRI) in the innermost disk regions were studied for protoplanetary gas-dust disks formed from prestellar cores of various mass $M_{rm core}$ and mass-to-magnetic flux ratio $lambda$. Numerical magnetohydrodynamics simulations in the thin-disk limit were employed to study the long-term ($sim 1.0$~Myr) evolution of protoplanetary disks with an adaptive turbulent $alpha$-parameter, which depends explicitly on the strength of the magnetic field and ionization fraction in the disk. The numerical models also feature the co-evolution of gas and dust, including the back-reaction of dust on gas and dust growth. Results. Dead zone with a low ionization fraction $x <= 10^{-13}$ and temperature on the order of several hundred Kelvin forms in the inner disk soon after its formation, extending from several to several tens of astronomical units depending on the model. The dead zone features pronounced dust rings that are formed due to the concentration of grown dust particles in the local pressure maxima. Thermal ionization of alkaline metals in the dead zone trigger the MRI and associated accretion burst, which is characterized by a sharp rise, small-scale variability in the active phase, and fast decline once the inner MRI-active region is depleted of matter. The burst occurrence frequency is highest in the initial stages of disk formation, and is driven by gravitational instability (GI), but declines with diminishing disk mass-loading from the infalling envelope. There is a causal link between the initial burst activity and the strength of GI in the disk fueled by mass infall from the envelope. Abridged.
119 - Michael T. Wolff 2019
Studying the physical processes occurring in the region just above the magnetic poles of strongly magnetized, accreting binary neutron stars is essential to our understanding of stellar and binary system evolution. Perhaps more importantly, it provid es us with a natural laboratory for studying the physics of high temperature and high density plasmas exposed to extreme radiation, gravitational, and magnetic fields. Observations over the past decade have shed new light on the manner in which plasma falling at velocities near the speed of light onto a neutron star surface is halted. Recent advances in modeling these processes have resulted in direct measurement of the magnetic fields and plasma properties. On the other hand, numerous physical processes have been identified that challenge our current picture of how the accretion process onto neutron stars works. Observation and theory are our essential tools in this regime because the extreme conditions cannot be duplicated on Earth. This white paper gives an overview of the current theory, the outstanding theoretical and observational challenges, and the importance of addressing them in contemporary astrophysics research.
138 - Maxim Dvornikov 2021
We study the neutrino scattering off a rotating black hole with a realistic accretion disk permeated by an intrinsic magnetic field. Neutrino trajectories in curved spacetime as well as the particle spin evolution in dense matter of an accretion disk and in the magnetic field are accounted for exactly. We obtain the fluxes of outgoing ultrarelativistic neutrinos taking into account the change of the neutrino polarization owing to spin oscillations. Using the conservative value of the neutrino magnetic moment and realistic radial distributions of the matter density and the magnetic field strength, we get that these fluxes are reduced by several percent compared to the case when no spin oscillations are accounted for. In some situations, there are spikes in the neutrino fluxes because of the neutrino interaction with the rotating plasma of an accretion disk. Taking into account the uncertainties in the astrophysical neutrino fluxes, the predicted effects turn out to be quite small to be observed with the current neutrino telescopes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا