ﻻ يوجد ملخص باللغة العربية
Here we introduce a new approach to compute the finite temperature lattice dynamics from first-principles via the newly developed slave mode expansion. We study PbTe where inelastic neutron scattering (INS) reveals strong signatures of nonlinearity as evidenced by anomalous features which emerge in the phonon spectra at finite temperature. Using our slave mode expansion in the classical limit, we compute the vibrational spectra and show remarkable agreement with temperature dependent INS measurements. Furthermore, we resolve experimental controversy by showing that there are no appreciable local nor global spontaneously broken symmetries at finite temperature and that the anomalous spectral features simply arise from two anharmonic interactions. Our approach should be broadly applicable across the periodic table.
We investigate the harmonic and anharmonic contributions to the phonon spectrum of lead telluride, and perform a complete characterization of how the anharmonic effects dominate the phonons in PbTe as temperature increases. This effect is the stronge
A description of non-collinear magnetism in the framework of spin-density functional theory is presented for the exact exchange energy functional which depends explicitly on two-component spinor orbitals. The equations for the effective Kohn-Sham sca
An accurate and easily extendable method to deal with lattice dynamics of solids is offered. It is based on first-principles molecular dynamics simulations and provides a consistent way to extract the best possible harmonic - or higher order - potent
According to Vegards law, larger radius atoms substitute for smaller atoms in a solid solution would enlarge the lattice parameters. However, by first-principles calculations, we have observed unusual lattice shrinkage when W replaces Ge in rock salt
We present a computationally efficient general first-principles based method for spin-lattice simulations for solids. Our method is based on a combination of atomistic spin dynamics and molecular dynamics, expressed through a spin-lattice Hamiltonian