ترغب بنشر مسار تعليمي؟ اضغط هنا

The electron-phonon relaxation time in thin superconducting titanium nitride films

135   0   0.0 ( 0 )
 نشر من قبل Anna Kardakova
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the direct measurement of the electron-phonon relaxation time, {tau}eph, in disordered TiN films. Measured values of {tau}eph are from 5.5 ns to 88 ns in the 4.2 to 1.7 K temperature range and consistent with a T-3 temperature dependence. The electronic density of states at the Fermi level N0 is estimated from measured material parameters. The presented results confirm that thin TiN films are promising candidate-materials for ultrasensitive superconducting detectors.



قيم البحث

اقرأ أيضاً

Thin films of TiN were sputter-deposited onto Si and sapphire wafers with and without SiN buffer layers. The films were fabricated into RF coplanar waveguide resonators, and internal quality factor measurements were taken at millikelvin temperatures in both the many photon and single photon limits, i.e. high and low power regimes, respectively. At high power, internal quality factors ($Q_i$s) higher than $10^7$ were measured for TiN with predominantly a (200)-TiN orientation. Films that showed significant (111)-TiN texture invariably had much lower $Q_i$s, on the order of $10^5$. Our studies show that the (200)-TiN is favored for growth at high temperature on either bare Si or SiN buffer layers. However, growth on bare sapphire or Si(100) at low temperature resulted in primarily a (111)-TiN orientation. Ellipsometry and Auger measurements indicate that the (200)-TiN growth on the bare Si substrates is correlated with the formation of a thin, $approx 2$ nm, layer of SiN during the pre-deposition procedure. In the single photon regime, $Q_i$ of these films exceeded $8times10^5$, while thicker SiN buffer layers led to reduced $Q_i$s at low power.
The superconducting critical temperature (Tc > 15K) of niobium titanium nitride (NbTiN) thin films allows for low-loss circuits up to 1.1 THz, enabling on-chip spectroscopy and multi-pixel imaging with advanced detectors. The drive for large scale de tector microchips is demanding NbTiN films with uniform properties over an increasingly larger area. This article provides an experimental comparison between two reactive d.c. sputter systems with different target sizes: a small target (100mm diameter) and a large target (127 mm x 444.5 mm). This article focuses on maximizing the Tc of the films and the accompanying I-V characteristics of the sputter plasma, and we find that both systems are capable of depositing films with Tc > 15 K. The resulting film uniformity is presented in a second manuscript in this volume. We find that these films are deposited within the transition from metallic to compound sputtering, at the point where target nitridation most strongly depends on nitrogen flow. Key in the deposition optimization is to increase the systems pumping speed and gas flows to counteract the hysteretic effects induced by the target size. Using the I-V characteristics as a guide proves to be an effective way to optimize a reactive sputter system, for it can show whether the optimal deposition regime is hysteresis-free and accessible.
322 - Heshan Yu , Jie Yuan , Beiyi Zhu 2017
The techniques of growing films with different parameters in single process make it possible to build up a sample library promptly. In this work, with a precisely controlled moving mask, we synthetized superconducting La2-xCexCuO4+/-{delta} combinato rial films on one SrTiO3 substrate with the doping levels from x = 0.1 to 0.19. The monotonicity in doping along the designed direction is verified by micro-region x-ray diffraction and electric transport measurements. More importantly, by means of numerical simulation, the real change of doping levels is in accordance with a linear gradient variation of doping levels in the La2-xCexCuO4+/-{delta} combinatorial films. Our results indicate that it is promising to accurately investigate materials with critical composition by combinatorial film technique.
We report a study of the relaxation time of the restoration of the resistive superconducting state in single crystalline boron-doped diamond using amplitude-modulated absorption of (sub-)THz radiation (AMAR). The films grown on an insulating diamond substrate have a low carrier density of about 2.5x10^{21} cm^{-3} and a critical temperature of about 2 K. By changing the modulation frequency we find a high-frequency rolloff which we associate with the characterstic time of energy relaxation between the electron and the phonon systems or the relaxation time for nonequilibrium superconductivity. Our main result is that the electron-phonon scattering time varies clearly as T^{-2}, over the accessible temperature range of 1.7 to 2.2 K. In addition, we find, upon approaching the critical temperature T_c, evidence for an increasing relaxation time on both sides of T_c.
We report on the inelastic-scattering rate of electrons on phonons and relaxation of electron energy studied by means of magnetoconductance, and photoresponse, respectively, in a series of strongly disordered superconducting NbN films. The studied fi lms with thicknesses in the range from 3 to 33 nm are characterized by different Ioffe-Regel parameters but an almost constant product q_Tl(q_T is the wave vector of thermal phonons and l is the elastic mean free path of electrons). In the temperature range 14-30 K, the electron-phonon scattering rates obey temperature dependencies close to the power law 1/tau_{e-ph} sim T^n with the exponents n = 3.2-3.8. We found that in this temperature range tau_{e-ph} and n of studied films vary weakly with the thickness and square resistance. At 10 K electron-phonon scattering times are in the range 11.9-17.5 ps. The data extracted from magnetoconductance measurements were used to describe the experimental photoresponse with the two-temperature model. For thick films, the photoresponse is reasonably well described without fitting parameters, however, for thinner films, the fit requires a smaller heat capacity of phonons. We attribute this finding to the reduced density of phonon states in thin films at low temperatures. We also show that the estimated Debye temperature in the studied NbN films is noticeably smaller than in bulk material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا