ﻻ يوجد ملخص باللغة العربية
The shapes of solar coronal loops are sensitive to the presence of electrical currents that are the carriers of the nonpotential energy available for impulsive activity. We use this information in a new method for modeling the coronal magnetic field of AR 11158 as a nonlinear force-free field (NLFFF). The observations used are coronal images around time of major flare activity on 2011/02/15, together with the surface line-of-sight magnetic field measurements. The data are from the Helioseismic and Magnetic Imager and Atmospheric Imaging Assembly (HMI and AIA, respectively) onboard the Solar Dynamics Observatory (SDO). The model fields are constrained to approximate the coronal loop configurations as closely as possible, while also subject to the force-free constraints. The method does not use transverse photospheric magnetic field components as input, and is thereby distinct from methods for modeling NLFFFs based on photospheric vector magnetograms. We validate the method using observations of AR 11158 at a time well before major flaring, and subsequently review the field evolution just prior to and following an X2.2 flare and associated eruption. The models indicate that the energy released during the instability is about $1times10^{32}$ erg, consistent with what is needed to power such a large eruptive flare. Immediately prior to the eruption the model field contains a compact sigmoid bundle of twisted flux that is not present in the post-eruption models, which is consistent with the observations. The core of that model structure is twisted by $approx0.9$ full turns about its axis.
Here we report on the unique observation of flaring coronal loops at the solar limb using high resolution imaging spectropolarimetry from the Swedish 1-meter Solar Telescope. The vantage position, orientation and nature of the chromospheric material
The characteristic electron densities, temperatures, and thermal distributions of 1MK active region loops are now fairly well established, but their coronal magnetic field strengths remain undetermined. Here we present measurements from a sample of c
Coronal loops are building blocks of solar active regions. However, their formation mechanism is still not well understood. Here we present direct observational evidence for the formation of coronal loops through magnetic reconnection as new magnetic
Flares are a major explosive event in our solar system. They are often followed by coronal mass ejection that has a potential to trigger the geomagnetic storms. There are various studies aiming to predict when and where the flares are likely to occur
The magnetic field plays a key role in producing solar flares, so that the investigation on the relationship between the magnetic field properties and flares is significant. In this paper, based on the magnetic field extrapolated from the photospheri