ترغب بنشر مسار تعليمي؟ اضغط هنا

Basin of attraction for turbulent thermalization and the range of validity of classical-statistical simulations

146   0   0.0 ( 0 )
 نشر من قبل Kirill Boguslavski
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Different thermalization scenarios for systems with large fields have been proposed in the literature based on classical-statistical lattice simulations approximating the underlying quantum dynamics. We investigate the range of validity of these simulations for condensate driven as well as fluctuation dominated initial conditions for the example of a single component scalar field theory. We show that they lead to the same phenomenon of turbulent thermalization for the whole range of (weak) couplings where the classical-statistical approach is valid. In the turbulent regime we establish the existence of a dual cascade characterized by universal scaling exponents and scaling functions. This complements previous investigations where only the direct energy cascade has been studied for the single component theory. A proposed alternative thermalization scenario for stronger couplings is shown to be beyond the range of validity of classical-statistical simulations.



قيم البحث

اقرأ أيضاً

328 - F. Gelis , N. Tanji 2013
In this paper, we show how classical statistical field theory techniques can be used to efficiently perform the numerical evaluation of the non-perturbative Schwinger mechanism of particle production by quantum tunneling. In some approximation, we al so consider the back-reaction of the produced particles on the external field, as well as the self-interactions of the produced particles.
184 - F. Becattini 2011
We analyze hadro-chemical freeze-out in central Pb+Pb collisions at CERN SPS energies, employing the hybrid version of UrQMD which models hadronization by the Cooper-Frye mechanism, and matches to a final hadron-resonance cascade. We fit the results both before and after the cascade stage using the Statistical Hadronization Model, to assess the effect of the cascade phase. We observe a strong effect on antibaryon yields except anti-{Omega}, resulting in a shift in T and {mu}_B. We discuss the implications for the freeze-out curve.
We study the spectral properties of an overoccupied gluonic system far from equilibrium. Using classical Yang-Mills simulations and linear response theory, we determine the statistical and spectral functions. We measure dispersion relations and dampi ng rates of transversally and longitudinally polarized excitations in the gluonic plasma, and also study further structures in the spectral function.
Hagedorn states are characterized by being very massive hadron-like resonances and by not being limited to quantum numbers of known hadrons. To generate such a zoo of different Hagedorn states, a covariantly formulated bootstrap equation is solved by ensuring energy conservation and conservation of baryon number $B$, strangeness $S$ and electric charge $Q$. The numerical solution of this equation provides Hagedorn spectra, which enable to obtain the decay width for Hagedorn states needed in cascading decay simulations. A single (heavy) Hagedorn state cascades by various two-body decay channels subsequently into final stable hadrons. All final hadronic observables like masses, spectral functions and decay branching ratios for hadronic feed down are taken from the hadronic transport model UrQMD. Strikingly, the final energy spectra of resulting hadrons are exponential showing a thermal-like distribution with the characteristic Hagedorn temperature.
Boltzmanns ergodic hypothesis furnishes a possible explanation for the emergence of statistical mechanics in the framework of classical physics. In quantum mechanics, the Eigenstate Thermalization Hypothesis (ETH) is instead generally considered as a possible route to thermalization. This is because the notion of ergodicity itself is vague in the quantum world and it is often simply taken as a synonym for thermalization. Here we show, in an elementary way, that when quantum ergodicity is properly defined, it is, in fact, equivalent to ETH. In turn, ergodicity is equivalent to thermalization, thus implying the equivalence of thermalization and ETH. This result previously appeared in [De Palma et al., Phys. Rev. Lett. 115, 220401 (2015)], but becomes particularly clear in the present context. We also show that it is possible to define a classical analogue of ETH which is implicitly assumed to be satisfied when constructing classical statistical mechanics. Classical and quantum statistical mechanics are built according to the familiar standard prescription. This prescription, however, is ontologically justified only in the quantum world.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا