ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on `Energy transfer, entanglement and decoherence in a molecular dimer interacting with a phonon bath

67   0   0.0 ( 0 )
 نشر من قبل James Lim
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the influence of the shared phonon bath considered in H. Hossein-Nejad and G. D. Scholes, New J. Phys. 12, 065045 (2010) on the exciton transfer in a two-molecule system can be reproduced by that of an independent bath model.


قيم البحث

اقرأ أيضاً

49 - Fulu Zheng , Yuyu Zhang , Lu Wang 2018
A Rabi dimer is used to model a recently reported circuit quantum electrodynamics system composed of two coupled transmission-line resonators with each coupled to one qubit. In this study, a phonon bath is adopted to mimic the multimode micromechanic al resonators and is coupled to the qubits in the Rabi dimer. The dynamical behavior of the composite system is studied by the Dirac-Frenkel time-dependent variational principle combined with the multiple Davydov D$_{2}$ ans{a}tze. Initially all the photons are pumped into the left resonator, and the two qubits are in the down state coupled with the phonon vacuum. In the strong qubit-photon coupling regime, the photon dynamics can be engineered by tuning the qubit-bath coupling strength $alpha$ and photon delocalization is achieved by increasing $alpha$. In the absence of dissipation, photons are localized in the initial resonator. Nevertheless, with moderate qubit-bath coupling, photons are delocalized with quasiequilibration of the photon population in two resonators at long times. In this case, high frequency bath modes are activated by interacting with depolarized qubits. For strong dissipation, photon delocalization is achieved via frequent photon-hopping within two resonators and the qubits are suppressed in their initial down state.
Using recent results in the field of quantum chaos we derive explicit expressions for the time scale of decoherence induced by the system-environment entanglement. For a generic system-environment interaction and for a generic quantum chaotic system as environment, conditions are derived for energy eigenstates to be preferred states in the weak coupling regime. A simple model is introduced to numerically confirm our predictions. The results presented here may also help understanding the dynamics of quantum entanglement generation in chaotic quantum systems.
We analyze the dynamics of entanglement in a two-qubit system interacting with an initially squeezed thermal environment via a quantum nondemolition system-reservoir interaction, with the system and reservoir assumed to be initially separable. We com pare and contrast the decoherence of the two-qubit system in the case where the qubits are mutually close-by (`collective regime) or distant (`localized regime) with respect to the spatial variation of the environment. Sudden death of entanglement (as quantified by concurrence) is shown to occur in the localized case rather than in the collective case, where entanglement tends to `ring down. A consequence of the QND character of the interaction is that the time-evolved fidelity of a Bell state never falls below $1/sqrt{2}$, a fact that is useful for quantum communication applications like a quantum repeater. Using a novel quantification of mixed state entanglement, we show that there are noise regimes where even though entanglement vanishes, the state is still available for applications like NMR quantum computation, because of the presence of a pseudo-pure component.
We study the relation between the sudden death and revival of the entanglement of two qubits in a common squeezed reservoir, and the normal decoherence, by getting closer to the Decoherence Free Subspace and calculating the effect on the death and revival times.
We report on the immersion of a spin-qubit encoded in a single trapped ion into a spin-polarized neutral atom environment, which possesses both continuous (motional) and discrete (spin) degrees of freedom. The environment offers the possibility of a precise microscopic description, which allows us to understand dynamics and decoherence from first principles. We observe the spin dynamics of the qubit and measure the decoherence times (T1 and T2), which are determined by the spin-exchange interaction as well as by an unexpectedly strong spin-nonconserving coupling mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا