ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement-induced Decoherence and Energy Eigenstates

141   0   0.0 ( 0 )
 نشر من قبل Wen-Ge Wang
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using recent results in the field of quantum chaos we derive explicit expressions for the time scale of decoherence induced by the system-environment entanglement. For a generic system-environment interaction and for a generic quantum chaotic system as environment, conditions are derived for energy eigenstates to be preferred states in the weak coupling regime. A simple model is introduced to numerically confirm our predictions. The results presented here may also help understanding the dynamics of quantum entanglement generation in chaotic quantum systems.



قيم البحث

اقرأ أيضاً

We study the exact decoherence dynamics of the entangled squeezed state of two single-mode optical fields interacting with two independent and uncorrelated environments. We analyze in detail the non-Markovian effects on the entanglement evolution of the initially entangled squeezed state for different environmental correlation time scales. We find that the environments have dual actions on the system: backaction and dissipation. In mparticular, when the environmental correlation time scale is comparable to the time scale for significant change in the system, the backaction would counteract the dissipative effect. Interestingly, this results in the survival of some residual entanglement in the final steady state.
388 - G. Campagnano , A. Hamma , 2009
We study the entanglement dynamics and relaxation properties of a system of two interacting qubits in the two cases (I) two independent bosonic baths and (II) one common bath, at temperature T. The entanglement dynamics is studied in terms of the con currence C (t) between the two spins and of the von Neumann entropy S(t) with respect to the bath, as a function of time. We prove that the system does thermalize. In the case (II) of a single bath, the existence of a decoherence-free (DFS) subspace makes entanglement dynamics very rich. We show that when the system is initially in a state with a component in the DFS the relaxation time is surprisingly long, showing the existence of semi-decoherence free subspaces. The equilibrium state in this case is not the Gibbs state. The entanglement dynamics for the single bath case is also studied as a function of temperature, coupling strength with the environment and strength of tunneling coupling. The case of the mixed state is finally shown and discussed.
Complex quantum trajectory approach, which arose from a modified de Broglie-Bohm interpretation of quantum mechanics, has attracted much attention in recent years. The exact complex trajectories for the Eckart potential barrier and the soft potential step, plotted in a previous work, show that more trajectories link the left and right regions of the barrier, when the energy is increased. In this paper, we evaluate the reflection probability using a new ansatz based on these observations, as the ratio between the total probabilities of reflected and incident trajectories. While doing this, we also put to test the complex-extended probability density previously postulated for these quantum trajectories. The new ansatz is preferred since the evaluation is solely done with the help of the complex-extended probability density along the imaginary direction and the trajectory pattern itself. The calculations are performed for a rectangular potential barrier, symmetric Eckart and Morse barriers, and a soft potential step. The predictions are in perfect agreement with the standard results for potentials such as the rectangular potential barrier. For the other potentials, there is very good agreement with standard results, but it is exact only for low and high energies. For moderate energies, there are slight deviations. These deviations result from the periodicity of the trajectory pattern along the imaginary axis and have a maximum value only as much as $0.1 %$ of the standard value. Measurement of such deviation shall provide an opportunity to falsify the ansatz.
Quantum spin models with variable-range interactions can exhibit certain quantum characteristics that a short-ranged model cannot possess. By considering the quantum XYZ model whose interaction strength between different sites varies either exponenti ally or polynomially, we report the creation of long-range entanglement in dynamics both in the absence and presence of system-bath interactions. Specifically, during closed dynamics, we determine a parameter regime from which the system should start its evolution so that the resulting state after quench can produce a high time-averaged entanglement having low fluctuations. Both in the exponential and power-law decays, it occurs when the magnetic field is weak and the interactions in the z-direction are nonvanishing. When part of the system interacts with the bath repeatedly or is attached to a collection of harmonic oscillators along with dephasing noise in the z-direction, we observe that long-range entanglement of the subparts which are not attached with the environment remains constant with time in the beginning of the evolution, known as freezing of entanglement, thereby demonstrating a method to protect long-range entanglement. We find that the frozen entanglement content in any length and the time up to which freezing occurs called the freezing terminal to follow a complementary relation for all ranges of interactions. However, we find that for a fixed range of entanglement, there exists a critical value of interaction length which leads to the maximum freezing terminal.
We in this paper study quantum correlations for two neutral spin-particles coupled with a single-mode optical cavity through the usual magnetic interaction. Two-spin entangled states for both antiparallel and parallel spin-polarizations are generated under the photon coherent-state assumption. Based on the quantum master equation we derive the time-dependent quantum correlation of Clauser-Horne-Shimony-Holt (CHSH) type explicitly in comparison with the well known entanglement-measure concurrence. In the two-spin singlet state, which is recognized as one eigenstate of the system, the CHSH correlation and concurrence remain in their maximum values invariant with time and independent of the average photon-numbers either. The correlation varies periodically with time in the general entangled-states for the low average photon-numbers. When the photon number increases to a certain value the oscillation becomes random and the correlations are suppressed below the Bell bound indicating the decoherence of the entangled states. In the high photon-number limit the coherence revivals periodically such that the CHSH correlation approaches the upper bound value at particular time points associated with the cavity-field period
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا