ﻻ يوجد ملخص باللغة العربية
Query evaluation in tuple-independent probabilistic databases is the problem of computing the probability of an answer to a query given independent probabilities of the individual tuples in a database instance. There are two main approaches to this problem: (1) in `grounded inference one first obtains the lineage for the query and database instance as a Boolean formula, then performs weighted model counting on the lineage (i.e., computes the probability of the lineage given probabilities of its independent Boolean variables); (2) in methods known as `lifted inference or `extensional query evaluation, one exploits the high-level structure of the query as a first-order formula. Although it is widely believed that lifted inference is strictly more powerful than grounded inference on the lineage alone, no formal separation has previously been shown for query evaluation. In this paper we show such a formal separation for the first time. We exhibit a class of queries for which model counting can be done in polynomial time using extensional query evaluation, whereas the algorithms used in state-of-the-art exact model counters on their lineages provably require exponential time. Our lower bounds on the running times of these exact model counters follow from new exponential size lower bounds on the kinds of d-DNNF representations of the lineages that these model counters (either explicitly or implicitly) produce. Though some of these queries have been studied before, no non-trivial lower bounds on the sizes of these representations for these queries were previously known.
We study counting propositional logic as an extension of propositional logic with counting quantifiers. We prove that the complexity of the underlying decision problem perfectly matches the appropriate level of Wagners counting hierarchy, but also th
We study the $generalized~model~counting~problem$, defined as follows: given a database, and a set of deterministic tuples, count the number of subsets of the database that include all deterministic tuples and satisfy the query. This problem is compu
We investigate the computational complexity of minimizing the source side-effect in order to remove a given number of tuples from the output of a conjunctive query. In particular, given a multi-relational database $D$, a conjunctive query $Q$, and a
We investigate the computational complexity of minimizing the source side-effect in order to remove a given number of tuples from the output of a conjunctive query. This is a variant of the well-studied {em deletion propagation} problem, the differen
Arising user-centric graph applications such as route planning and personalized social network analysis have initiated a shift of paradigms in modern graph processing systems towards multi-query analysis, i.e., processing multiple graph queries in pa