ترغب بنشر مسار تعليمي؟ اضغط هنا

Q-Graph: Preserving Query Locality in Multi-Query Graph Processing

62   0   0.0 ( 0 )
 نشر من قبل Christian Mayer
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Arising user-centric graph applications such as route planning and personalized social network analysis have initiated a shift of paradigms in modern graph processing systems towards multi-query analysis, i.e., processing multiple graph queries in parallel on a shared graph. These applications generate a dynamic number of localized queries around query hotspots such as popular urban areas. However, existing graph processing systems are not yet tailored towards these properties: The employed methods for graph partitioning and synchronization management disregard query locality and dynamism which leads to high query latency. To this end, we propose the system Q-Graph for multi-query graph analysis that considers query locality on three levels. (i) The query-aware graph partitioning algorithm Q-cut maximizes query locality to reduce communication overhead. (ii) The method for synchronization management, called hybrid barrier synchronization, allows for full exploitation of local queries spanning only a subset of partitions. (iii) Both methods adapt at runtime to changing query workloads in order to maintain and exploit locality. Our experiments show that Q-cut reduces average query latency by up to 57 percent compared to static query-agnostic partitioning algorithms.


قيم البحث

اقرأ أيضاً

Querying graph structured data is a fundamental operation that enables important applications including knowledge graph search, social network analysis, and cyber-network security. However, the growing size of real-world data graphs poses severe chal lenges for graph databases to meet the response-time requirements of the applications. Planning the computational steps of query processing - Query Planning - is central to address these challenges. In this paper, we study the problem of learning to speedup query planning in graph databases towards the goal of improving the computational-efficiency of query processing via training queries.We present a Learning to Plan (L2P) framework that is applicable to a large class of query reasoners that follow the Threshold Algorithm (TA) approach. First, we define a generic search space over candidate query plans, and identify target search trajectories (query plans) corresponding to the training queries by performing an expensive search. Subsequently, we learn greedy search control knowledge to imitate the search behavior of the target query plans. We provide a concrete instantiation of our L2P framework for STAR, a state-of-the-art graph query reasoner. Our experiments on benchmark knowledge graphs including DBpedia, YAGO, and Freebase show that using the query plans generated by the learned search control knowledge, we can significantly improve the speed of STAR with negligible loss in accuracy.
As Knowledge Graphs (KGs) continue to gain widespread momentum for use in different domains, storing the relevant KG content and efficiently executing queries over them are becoming increasingly important. A range of Data Management Systems (DMSs) ha ve been employed to process KGs. This paper aims to provide an in-depth analysis of query performance across diverse DMSs and KG query types. Our aim is to provide a fine-grained, comparative analysis of four major DMS types, namely, row-, column-, graph-, and document-stores, against major query types, namely, subject-subject, subject-object, tree-like, and optional joins. In particular, we analyzed the performance of row-store Virtuoso, column-store Virtuoso, Blazegraph (i.e., graph-store), and MongoDB (i.e., document-store) using five well-known benchmarks, namely, BSBM, WatDiv, FishMark, BowlognaBench, and BioBench-Allie. Our results show that no single DMS displays superior query performance across the four query types. In particular, row- and column-store Virtuoso are a factor of 3-8 faster for tree-like joins, Blazegraph performs around one order of magnitude faster for subject-object joins, and MongoDB performs over one order of magnitude faster for high-selective queries.
208 - George Giakkoupis 2020
K-Nearest-Neighbors (KNN) graphs are central to many emblematic data mining and machine-learning applications. Some of the most efficient KNN graph algorithms are incremental and local: they start from a random graph, which they incrementally improve by traversing neighbors-of-neighbors links. Paradoxically, this random start is also one of the key weaknesses of these algorithms: nodes are initially connected to dissimilar neighbors, that lie far away according to the similarity metric. As a result, incremental algorithms must first laboriously explore spurious potential neighbors before they can identify similar nodes, and start converging. In this paper, we remove this drawback with Cluster-and-Conquer (C 2 for short). Cluster-and-Conquer boosts the starting configuration of greedy algorithms thanks to a novel lightweight clustering mechanism, dubbed FastRandomHash. FastRandomHash leverages random-ness and recursion to pre-cluster similar nodes at a very low cost. Our extensive evaluation on real datasets shows that Cluster-and-Conquer significantly outperforms existing approaches, including LSH, yielding speed-ups of up to x4.42 while incurring only a negligible loss in terms of KNN quality.
The broadening adoption of machine learning in the enterprise is increasing the pressure for strict governance and cost-effective performance, in particular for the common and consequential steps of model storage and inference. The RDBMS provides a n atural starting point, given its mature infrastructure for fast data access and processing, along with support for enterprise features (e.g., encryption, auditing, high-availability). To take advantage of all of the above, we need to address a key concern: Can in-RDBMS scoring of ML models match (outperform?) the performance of dedicated frameworks? We answer the above positively by building Raven, a system that leverages native integration of ML runtimes (i.e., ONNX Runtime) deep within SQL Server, and a unified intermediate representation (IR) to enable advanced cross-optimizations between ML and DB operators. In this optimization space, we discover the most exciting research opportunities that combine DB/Compiler/ML thinking. Our initial evaluation on real data demonstrates performance gains of up to 5.5x from the native integration of ML in SQL Server, and up to 24x from cross-optimizations--we will demonstrate Raven live during the conference talk.
84 - Tianyu Liu , Chi Wang 2020
We study the hardness of Approximate Query Processing (AQP) of various types of queries involving joins over multiple tables of possibly different sizes. In the case where the query result is a single value (e.g., COUNT, SUM, and COUNT(DISTINCT)), we prove worst-case information-theoretic lower bounds for AQP problems that are given parameters $epsilon$ and $delta$, and return estimated results within a factor of 1+$epsilon$ of the true results with error probability at most $delta$. In particular, the lower bounds for cardinality estimation over joins under various settings are contained in our results. Informally, our results show that for various database queries with joins, unless restricted to the set of queries whose results are always guaranteed to be above a very large threshold, the amount of information an AQP algorithm needs for returning an accurate approximation is at least linear in the number of rows in the largest table. Similar lower bounds even hold for some special cases where additional information such as top-K heavy hitters and all frequency vectors are available. In the case of GROUP-BY where the query result is not a single number, we study the lower bound for the amount of information used by any approximation algorithm that does not report any non-existing group and does not miss groups of large total size. Our work extends the work of Alon, Gibbons, Matias, and Szegedy [AGMS99].We compare our lower bounds with the amount of information required by Bernoulli sampling to give an accurate approximation. For COUNT queries with joins over multiple tables of the same size, the upper bound matches the lower bound, unless the problem setting is restricted to the set of queries whose results are always guaranteed to be above a very large threshold.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا