ترغب بنشر مسار تعليمي؟ اضغط هنا

Identifying high-redshift GRBs with RATIR

70   0   0.0 ( 0 )
 نشر من قبل Owen Littlejohns Dr
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a template fitting algorithm for determining photometric redshifts, $z_{rm phot}$, of candidate high-redshift gamma-ray bursts (GRBs). Using afterglow photometry, obtained by the Reionization And Transients InfraRed (RATIR) camera, this algorithm accounts for the intrinsic GRB afterglow spectral energy distribution (SED), host dust extinction and the effect of neutral hydrogen (local and cosmological) along the line of sight. We present the results obtained by this algorithm and RATIR photometry of GRB 130606A, finding a range of best fit solutions $5.6 < z_{rm phot} < 6.0$ for models of several host dust extinction laws (none, MW, LMC and SMC), consistent with spectroscopic measurements of the redshift of this GRB. Using simulated RATIR photometry, we find our algorithm provides precise measures of $z_{rm phot}$ in the ranges $4 < z_{rm phot} lesssim 8$ and $9 < z_{rm phot} < 10$ and can robustly determine when $z_{rm phot}>4$. Further testing highlights the required caution in cases of highly dust extincted host galaxies. These tests also show that our algorithm does not erroneously find $z_{rm phot} < 4$ when $z_{rm sim}>4$, thereby minimizing false negatives and allowing us to rapidly identify all potential high-redshift events.

قيم البحث

اقرأ أيضاً

Due to their highly luminous nature, gamma-ray bursts (GRBs) are useful tools in studying the early Universe (up to z = 10). We consider whether the available subset of Swift high redshift GRBs are unusual when compared to analogous simulations of a bright low redshift sample. By simulating data from the Burst Alert Telescope (BAT; Barthelmy et al. 2005) the light curves of these bright bursts are obtained over an extensive range of redshifts, revealing complicated evolution in properties of the prompt emission such as T90.
In this work we present the first results of our imaging campaign at Keck Observatory to identify the host galaxies of dark gamma-ray bursts (GRBs), events with no detected optical afterglow or with detected optical flux significantly fainter than ex pected from the observed X-ray afterglow. We find that out of a uniform sample of 29 Swift bursts rapidly observed by the Palomar 60-inch telescope through March 2008 (14 of which we classify as dark), all events have either a detected optical afterglow, a probable optical host-galaxy detection, or both. Our results constrain the fraction of Swift GRBs coming from very high redshift (z > 7), such as the recent GRB 090423, to between 0.2-7 percent at 80% confidence. In contrast, a significant fraction of the sample requires large extinction columns (host-frame A_V > 1 mag, with several events showing A_V > 2-6 mag), identifying dust extinction as the dominant cause of the dark GRB phenomenon. We infer that a significant fraction of GRBs (and, by association, of high-mass star formation) occurs in highly obscured regions. However, the host galaxies of dark GRBs seem to have normal optical colors, suggesting that the source of obscuring dust is local to the vicinity of the GRB progenitor or highly unevenly distributed within the host galaxy.
75 - Q. Ma , U. Maio , B. Ciardi 2016
We study the possibility to detect and distinguish signatures of enrichment from PopIII stars in observations of PopII GRBs (GRBIIs) at high redshift by using numerical N-body/hydrodynamical simulations including atomic and molecular cooling, star fo rmation and metal spreading from stellar populations with different initial mass functions (IMFs), yields and lifetimes. PopIII and PopII star formation regimes are followed simultaneously and both a top-heavy and a Salpeter-like IMF for pristine PopIII star formation are adopted. We find that the fraction of GRBIIs hosted in a medium previously enriched by PopIII stars (PopIII-dominated) is model independent. Typical abundance ratios, such as [Si/O] vs [C/O] and [Fe/C] vs [Si/C], can help to disentangle enrichment from massive and intermediate PopIII stars, while low-mass first stars are degenerate with regular PopII generations. The properties of galaxies hosting PopIII-dominated GRBIIs are not very sensitive to the particular assumption on the mass of the first stars.
114 - T. Laskar , E. Berger , N. Tanvir 2013
We present optical, near-infrared, and radio observations of the afterglow of GRB 120521C. By modeling the multi-wavelength dataset, we derive a photometric redshift of z~6.0, which we confirm with a low signal-to-noise ratio spectrum of the afterglo w. We find that a model with a constant-density environment provides a good fit to the afterglow data, with an inferred density of 0.05/cm^3. The radio observations reveal the presence of a jet break at 7 d, corresponding to a jet opening angle of ~ 3 deg. The beaming-corrected gamma-ray and kinetic energies are both ~ 3e50 erg. We quantify the uncertainties in our results using a detailed Markov Chain Monte Carlo analysis, which allows us to uncover degeneracies between the physical parameters of the explosion. To compare GRB 120521C to other high-redshift bursts in a uniform manner we re-fit all available afterglow data for the two other bursts at z>6 with radio detections (GRBs 050904 and 090423). We find a jet break at ~ 15 d for GRB 090423, in contrast to previous work. Based on these three events, we find that GRBs at z>6 appear to explode in constant-density environments, and exhibit a wide range of energies and densities that span the range inferred for lower redshift bursts. On the other hand, we find a hint for narrower jets in the z>6 bursts, potentially indicating a larger true event rate at these redshifts. Overall, our results indicate that long GRBs share a common progenitor population at least to z~8.
We study the high-energy properties of GRB 181123B, a short gamma-ray burst (sGRB) at redshift $zapprox$1.75. We show that, despite its nominal short duration with $T_{90}<$2 s, this burst displays evidence of a temporally extended emission (EE) at h igh energies and that the same trend is observed in the majority of sGRBs at $zgtrsim$1. We discuss the impact of instrumental selection effects on the GRB classification, stressing that the measured $T_{90}$ is not an unambiguous indicator of the burst physical origin. By examining their environment (e.g. stellar mass, star formation, offset distribution), we find that these high-$z$ sGRBs share many properties of long GRBs at a similar distance and are consistent with a short-lived progenitor system. If produced by compact binary mergers, these sGRBs with EE may be easier to localize at large distances and herald a larger population of sGRBs in the early universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا