ﻻ يوجد ملخص باللغة العربية
In this work we present the first results of our imaging campaign at Keck Observatory to identify the host galaxies of dark gamma-ray bursts (GRBs), events with no detected optical afterglow or with detected optical flux significantly fainter than expected from the observed X-ray afterglow. We find that out of a uniform sample of 29 Swift bursts rapidly observed by the Palomar 60-inch telescope through March 2008 (14 of which we classify as dark), all events have either a detected optical afterglow, a probable optical host-galaxy detection, or both. Our results constrain the fraction of Swift GRBs coming from very high redshift (z > 7), such as the recent GRB 090423, to between 0.2-7 percent at 80% confidence. In contrast, a significant fraction of the sample requires large extinction columns (host-frame A_V > 1 mag, with several events showing A_V > 2-6 mag), identifying dust extinction as the dominant cause of the dark GRB phenomenon. We infer that a significant fraction of GRBs (and, by association, of high-mass star formation) occurs in highly obscured regions. However, the host galaxies of dark GRBs seem to have normal optical colors, suggesting that the source of obscuring dust is local to the vicinity of the GRB progenitor or highly unevenly distributed within the host galaxy.
We present the results of the 16-cm-waveband continuum observations of four host galaxies of gamma-ray bursts (GRBs) 990705, 021211, 041006, and 051022 using the Australia Telescope Compact Array. Radio emission was not detected in any of the host ga
Long-duration gamma-ray bursts (LGRBs) are the signatures of extraordinarily high-energy events occurring in our universe. Since their discovery, we have determined that these events are produced during the core-collapse deaths of rare young massive
Decades ago two classes of gamma-ray bursts were identified and delineated as having durations shorter and longer than about 2 s. Subsequently indications also supported the existence of a third class. Using maximum likelihood estimation we analyze t
New bounds on decaying Dark Matter are derived from the gamma-ray measurements of (i) the isotropic residual (extragalactic) background by Fermi and (ii) the Fornax galaxy cluster by H.E.S.S. We find that those from (i) are among the most stringent c
Motivated by the recent observational and theoretical evidence that long Gamma-Ray Bursts (GRBs) are likely associated with low metallicity, rapidly rotating massive stars, we examine the cosmological star formation rate (SFR) below a critical metall