ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrasonic Study of the Hidden Order and Heavy-Fermion State in URu$_2$Si$_2$ with Hydrostatic Pressure, Rh-doping, and High-Magnetic Fields

39   0   0.0 ( 0 )
 نشر من قبل Tatsuya Yanagisawa
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper reports recent progress of ultrasonic measurements on URu$_2$Si$_2$, including ultrasonic measurements under hydrostatic pressure, in pulsed-magnetic fields, and the effect of Rh-substitution. The observed changes of the elastic responses shed light on the orthorhombic-lattice instability with $Gamma_3$-symmetry existing within the hidden order and the hybridized 5$f$-electron states of URu$_2$Si$_2$.

قيم البحث

اقرأ أيضاً

URu$_2$Si$_2$ is surely one of the most mysterious of the heavy-fermion compounds. Despite more than twenty years of experimental and theoretical works, the order parameter of the transition at $T_0 = 17.5$ K is still unknown. The state below $T_0$ r emains called hidden-order phase and the stakes are still to identify the energy scales driving the system to this phase. We present new magnetoresistivity and magnetization measurements performed on very-high-quality single crystals in pulsed magnetic fields up to 60 T. We show that the transition to the hidden-order state in URu$_2$Si$_2$ is initially driven by a high-temperature crossover at around 40-50 K, which is a fingerprint of inter-site electronic correlations. In a magnetic field $mathbf{H}$ applied along the easy-axis $bf{c}$, the vanishing of this high-temperature scale precedes the polarization of the magnetic moments, as well as it drives the destabilization of the hidden-order phase. Strongly impurity-dependent magnetoresistivity confirms that the Fermi surface is reconstructed below $T_0$ and is strongly modified in a high magnetic field applied along $mathbf{c}$, i.e. at a sufficiently-high magnetic polarization. The possibility of a sharp crossover in the hidden-order state controlled by a field-induced change of the Fermi surface is pointed out.
The observation of Ising quasiparticles is a signatory feature of the hidden order phase of URu$_2$Si$_2$. In this paper we discuss its nature and the strong constraints it places on current theories of the hidden order. In the hastatic theory such a nisotropic quasiparticles are naturally described described by resonant scattering between half-integer spin conduction electrons and integer-spin Ising moments. The hybridization that mixes states of different Kramers parity is spinorial; its role as an symmetry-breaking order parameter is consistent with optical and tunnelling probes that indicate its sudden development at the hidden order transition. We discuss the microscopic origin of hastatic order, identifying it as a fractionalization of three body bound-states into integer spin fermions and half-integer spin bosons. After reviewing key features of hastatic order and their broader implications, we discuss our predictions for experiment and recent measurements. We end with challenges both for hastatic order and more generally for any theory of the hidden order state in URu$_2$Si$_2$.
At T$_0$ = 17.5 K an exotic phase emerges from a heavy fermion state in {ur}. The nature of this hidden order (HO) phase has so far evaded explanation. Formation of an unknown quasiparticle (QP) structure is believed to be responsible for the massive removal of entropy at HO transition, however, experiments and ab-initio calculations have been unable to reveal the essential character of the QP. Here we use femtosecond pump-probe time- and angle-resolved photoemission spectroscopy (tr-ARPES) to elucidate the ultrafast dynamics of the QP. We show how the Fermi surface is renormalized by shifting states away from the Fermi level at specific locations, characterized by vector $q_{<110>} = 0.56 pm 0.08$ {an}. Measurements of the temperature-time response reveal that upon entering the HO the QP lifetime in those locations increases from 42 fs to few hundred fs. The formation of the long-lived QPs is identified here as a principal actor of the HO.
175 - W. Knafo , D. Aoki , G.W. Scheerer 2017
A review of recent state-of-the-art pulsed field experiments performed on URu$_2$Si$_2$ under a magnetic field applied along its easy magnetic axis $mathbf{c}$ is given. Resistivity, magnetization, magnetic susceptibility, Shubnikov-de Haas, and neut ron diffraction experiments are presented, permitting to emphasize the relationship between Fermi surface reconstructions, the destruction of the hidden-order and the appearance of a spin-density wave state in a high magnetic field.
Quantum materials are epitomized by the influence of collective modes upon their macroscopic properties. Relatively few examples exist, however, whereby coherence of the ground-state wavefunction directly contributes to the conductivity. Notable exam ples include the quantizing effects of high magnetic fields upon the 2D electron gas, the collective sliding of charge density waves subject to high electric fields, and perhaps most notably the macroscopic phase coherence that enables superconductors to carry dissipationless currents. Here we reveal that the low temperature hidden order state of URu$_2$Si$_2$ exhibits just such a connection between the quantum and macroscopic worlds -- under large voltage bias we observe non-linear contributions to the conductivity that are directly analogous to the manifestation of phase slips in one-dimensional superconductors [1], suggesting a complex order parameter for hidden order
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا