ﻻ يوجد ملخص باللغة العربية
We study the finite-temperature expectation values of exponential fields in the sine-Gordon model. Using finite-volume regularization, we give a low-temperature expansion of such quantities in terms of the connected diagonal matrix elements, for which we provide explicit formulas. For special values of the exponent, computations by other methods are available and used to validate our findings. Our results can also be interpreted as a further support for a previous conjecture about the connection between finite- and infinite-volume form factors valid up to terms exponentially decaying in the volume.
We present a numerical computation of overlaps in mass quenches in sine-Gordon quantum field theory using truncated conformal space approach (TCSA). To improve the cut-off dependence of the method, we use a novel running coupling definition which has
Using generalized hydrodynamics (GHD), we develop the Euler hydrodynamics of classical integrable field theory. Classical field GHD is based on a known formalism for Gibbs ensembles of classical fields, that resembles the thermodynamic Bethe ansatz o
We study the one-dimensional sine-Gordon model as a prototype of roughening phenomena. In spite of the fact that it has been recently proven that this model can not have any phase transition [J. A. Cuesta and A. Sanchez, J. Phys. A 35, 2373 (2002)],
The material copper pyrimidine dinitrate (Cu-PM) is a quasi-one-dimensional spin system described by the spin-1/2 XXZ Heisenberg antiferromagnet with Dzyaloshinskii-Moriya interactions. Based on numerical results obtained by the density-matrix renorm
We study the dissipative dynamics of one-dimensional fermions, described in terms of the sine-Gordon model in its massive boson or semi-classical limit, while keeping track of forward scattering processes. The system is prepared in the gapped ground