ﻻ يوجد ملخص باللغة العربية
Using generalized hydrodynamics (GHD), we develop the Euler hydrodynamics of classical integrable field theory. Classical field GHD is based on a known formalism for Gibbs ensembles of classical fields, that resembles the thermodynamic Bethe ansatz of quantum models, which we extend to generalized Gibbs ensembles (GGEs). In general, GHD must take into account both solitonic and radiative modes of classical fields. We observe that the quasi-particle formulation of GHD remains valid for radiative modes, even though these do not display particle-like properties in their precise dynamics. We point out that because of a UV catastrophe similar to that of black body radiation, radiative modes suffer from divergences that restrict the set of finite-average observables; this set is larger for GGEs with higher conserved charges. We concentrate on the sinh-Gordon model, which only has radiative modes, and study transport in the domain-wall initial problem as well as Euler-scale correlations in GGEs. We confirm a variety of exact GHD predictions, including those coming from hydrodynamic projection theory, by comparing with Metropolis numerical evaluations.
Our review covers microscopic foundations of generalized hydrodynamics (GHD). As one generic approach we develop form factor expansions, for ground states and generalized Gibbs ensembles (GGE), and compare the so obtained results with predictions fro
The Lax pair formalism is considered to discuss the integrability of the N=1 supersymmetric sinh-Gordon model with a defect. We derive associated defect matrix for the model and construct the generating functions of the modified conserved quantities.
The repulsive Lieb-Liniger model can be obtained as the non-relativistic limit of the Sinh-Gordon model: all physical quantities of the latter model (S-matrix, Lagrangian and operators) can be put in correspondence with those of the former. We use th
We study a quantum quench of the mass and the interaction in the Sinh-Gordon model starting from a large initial mass and zero initial coupling. Our focus is on the determination of the expansion of the initial state in terms of post-quench excitatio
We discuss several classes of integrable Floquet systems, i.e. systems which do not exhibit chaotic behavior even under a time dependent perturbation. The first class is associated with finite-dimensional Lie groups and infinite-dimensional generaliz