ترغب بنشر مسار تعليمي؟ اضغط هنا

Property of LCP-GEM in Pure Dimethyl Ether at Low Pressure

44   0   0.0 ( 0 )
 نشر من قبل Yoko Takeuchi
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a systematic investigation of the gain properties of a gas electron multiplier (GEM) foil in pure dimethyl ether (DME) at low pressures. The GEM is made from copper- clad liquid crystal polymer insulator (LCP-GEM) designed for space use, and is applied to a time projection chamber filled with low-pressure DME gas to observe the linear polarization of cosmic X-rays. We have measured gains of a 100 um-thick LCP-GEM as a function of the voltage between GEM electrodes at various gas pressures ranging from 10 to 190 Torr with 6.4 keV X-rays. The highest gain at 190 Torr is about 2x10^4, while that at 20 Torr is about 500. We find that the pressure and electric-field dependence of the GEM gain is described by the first Townsend coefficient. The energy scale from 4.5 to 8.0 keV is linear with non-linearity of less than 1.4% above 30 Torr.

قيم البحث

اقرأ أيضاً

We report on the performance of a Micro-Hole & Strip Plate (MHSP) electron multiplier operating in pure Xe, Kr, Ar and Ne at the pressure range of 1 to 6 bar. The maximal gains at 1 bar Xe and Kr are 50000 and 100000, respectively; they drop by about one order of magnitude at 2 bar and by almost another order of magnitude at 5-6 bar; they reach gains of 500 and 4000 at 5 bar in Xe and Kr, respectively. In Ar, the gain varies very little with pressure, being 3000-9000; in Ne the maximum attainable gain, about 100000, is pressure independent above 2 bar. The results are compared with that of single- and triple-GEM multipliers operated in similar conditions. Potential applications are in hard X-ray imaging and in cryogenic radiation detectors.
106 - A. Kozlov 2003
Results obtained with a triple GEM detector operated in pure CF4 with and without a reflective CsI photocathode are presented. The detector operates in a stable mode at gains up to 10^4. A deviation from exponential growth starts to develop when the total charge exceeds ~ 4 10^6 e leading to gain saturation when the total charge is ~ 2 10^7 e and making the structure relatively robust against discharges. No aging effects are observed in the GEM foils after a total accumulated charge of ~ 10 mC/cm^2 at the anode. The ion back-flow current to the reflective photocathode is comparable to the electron current to the anode. However, no significant degradation of the CsI photocathode is observed for a total ion back-flow charge of ~ 7 mC/cm^2.
37 - P. Vitulo 2018
We succeeded in modifying and controlling the electrical resistance of a standard High Pressure Laminate (HPL) panel through the use of a Gas Electron Multiplier (GEM) foil that has been embedded into the bulk of the HPL plate itself. Electrical char acterizations were made and preliminary data show that this HPL-GEM embedded system can easily vary its bulk resistance by more than one order of magnitude. Data show that the bulk resistance change is exponential with the applied voltage to the embedded GEM.
The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) is in the process of designing and constructing a forward tracking system based on triple GEM technology. This upgrade is necessary to give STAR the capability to reconstruct and identify the charge sign of W bosons over an extended rapidity range through their leptonic decay mode into an electron (positron) and a neutrino. This will allow a detailed study of the flavor-separated spin structure of the proton in polarized p + p collisions uniquely available at RHIC. The Forward GEM Tracker FGT will consist of six triple GEM disks with an outer radius of ~39 cm and an inner radius of ~10.5 cm, arranged along the beam pipe, covering the pseudo-rapidity range from 1.0 to 2.0 over a wide range of collision vertices. The GEM foils will be produced by Tech-Etch, Inc. Beam tests with test detectors using 10 cm x 10 cm Tech-Etch GEM foils and a two dimensional orthogonal strip readout have demonstrated a spatial resolution of 70 um or better and high efficiency.
Gaseous detectors are used in high energy physics as trackers or, more generally, as devices for the measurement of the particle position. For this reason, they must provide high spatial resolution and they have to be able to operate in regions of in tense radiation, i.e. around the interaction point of collider machines. Among these, Micro Pattern Gaseous Detectors (MPGD) are the latest frontier and allow to overcome many limitations of the pre-existing detectors, such as the radiation tolerance and the rate capability. The gas Electron Multiplier (GEM) is a MPGD that exploits an intense electric field in a reduced amplification region in order to prevent discharges. Several amplification stages, like in a triple-GEM, allow to increase the detector gain and to reduce the discharge probability. Reconstruction techniques such as charge centroid (CC) and micro-Time Projection Chamber ($upmu$TPC) are used to perform the position measurement. From literature triple-GEMs show a stable behaviour up to $10^8,$Hz/cm$^2$. A testbeam with four planar triple-GEMs has been performed at the Mainz Microtron (MAMI) facility and their performance was evaluated in different beam conditions. In this article a focus on the time performance for the $upmu$TPC clusterization is given and a new measurement of the triple-GEM limits at high rate will be presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا