ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of extreme correlations using canonical Fermions and path integrals

407   0   0.0 ( 0 )
 نشر من قبل Sriram Shastry
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B Sriram Shastry




اسأل ChatGPT حول البحث

The t-J model is studied using a novel and rigorous mapping of the Gutzwiller projected electrons, in terms of canonical electrons. The mapping has considerable similarity to the Dyson-Maleev transformation relating spin operators to canonical Bosons. This representation gives rise to a non Hermitean quantum theory, characterized by minimal redundancies. A path integral representation of the canonical theory is given. Using it, the salient results of the extremely correlated Fermi liquid (ECFL) theory, including the previously found Schwinger equations of motion, are easily rederived. Further a transparent physical interpretation of the previously introduced auxiliary Greens functions and the caparison factor is obtained. The low energy electron spectral function in this theory with a strong intrinsic asymmetry, is summarized in terms of a few expansion coefficients. These include an important emergent energy scale $Delta_0$ that shrinks to zero on approaching the insulating state, thereby making it difficult to access the underlying low energy Fermi liquid behavior. The scaled low frequency ECFL spectral function is related simply to the Fano line shape. The resulting energy dispersion (EDC or MDC) is a hybrid of a massive and a massless Dirac spectrum $ E^*_Qsim gamma, Q- sqrt{Gamma_0^2 + Q^2} $, where the vanishing of $Q$, a momentum like variable, locates the kink. Therefore the quasiparticle velocity interpolates between $(gamma mp 1)$ over a width $Gamma_0$ on the two sides of $Q=0$. The resulting kink strongly resembles a prominent low energy feature seen in angle resolved photoemission spectra (ARPES) of cuprate materials. We also propose novel ways of analyzing the ARPES data to isolate the predicted asymmetry between particle and hole excitations.



قيم البحث

اقرأ أيضاً

We develop a dynamical symmetry approach to path integrals for general interacting quantum spin systems. The time-ordered exponential obtained after the Hubbard-Stratonovich transformation can be disentangled into the product of a finite number of th e usual exponentials. This procedure leads to a set of stochastic differential equations on the group manifold, which can be further formulated in terms of the supersymmetric effective action. This action has the form of the Witten topological field theory in the continuum limit. As a consequence, we show how it can be used to obtain the exact results for a specific quantum many-body system which can be otherwise solved only by the Bethe ansatz. To our knowledge this represents the first example of a many-body system treated exactly using the path integral formulation. Moreover, our method can deal with time-dependent parameters, which we demonstrate explicitly.
We use time- and angle-resolved photoemission spectroscopy (tr-ARPES) in the Extreme Ultraviolet (EUV) to measure the time- and momentum-dependent electronic structure of photo-excited K0.3MoO3. Prompt depletion of the Charge Density Wave (CDW) conde nsate launches coherent oscillations of the amplitude mode, observed as a 1.7-THz-frequency modulation of the bonding band position. In contrast, the anti-bonding band oscillates at about half this frequency. We attribute these oscillations to coherent excitation of phasons via parametric amplification of phase fluctuations.
We report the novel pressure(P)-temperature(T) phase diagrams of antiferromagnetism (AF) and superconductivity (SC) in CeRhIn$_5$, CeIn$_3$ and CeCu$_2$Si$_2$ revealed by the NQR measurement. In the itinerant helical magnet CeRhIn$_5$, we found that the Neel temperature $T_N$ is reduced at $P geq$ 1.23 GPa with an emergent pseudogap behavior. The coexistence of AF and SC is found in a narrow P range of 1.63 - 1.75 GPa, followed by the onset of SC with line-node gap over a wide P window 2.1 - 5 GPa. In CeIn$_3$, the localized magnetic character is robust against the application of pressure up to $P sim$ 1.9 GPa, beyond which the system evolves into an itinerant regime in which the resistive superconducting phase emerges. We discuss the relationship between the phase diagram and the magnetic fluctuations. In CeCu$_2$Si$_2$, the SC and AF coexist on a microscopic level once its lattice parameter is expanded. We remark that the underlying marginal antiferromagnetic state is due to collective magnetic excitations in the superconducting state in CeCu$_2$Si$_2$. An interplay between AF and SC is discussed on the SO(5) scenario that unifies AF and SC. We suggest that the SC and AF in CeCu$_2$Si$_2$ have a common mechanism.
We examine antiferromagnetic and d-wave superfluid phases of cold fermionic atoms with repulsive interactions in a two-dimensional optical lattice combined with a harmonic trapping potential. For experimentally realistic parameters, the trapping pote ntial leads to the coexistence of magnetic and superfluid ordered phases with the normal phase. We study the intriguing shell structures arising from the competition between the magnetic and superfluid order as a function of the filling fraction. In certain cases antiferromagnetism induce superfluidity by charge redistributions. We furthermore demonstrate how these shell structures can be detected as distinct anti-bunching dips and pairing peaks in the density-density correlation function probed in expansion experiments.
379 - C.W.J. Beenakker 2014
I. Introduction (What is new in RMT, Superconducting quasiparticles, Experimental platforms) II. Topological superconductivity (Kitaev chain, Majorana operators, Majorana zero-modes, Phase transition beyond mean-field) III. Fundamental symmetries (Particle-hole symmetry, Majorana representation, Time-reversal and chiral symmetry) IV. Hamiltonian ensembles (The ten-fold way, Midgap spectral peak, Energy level repulsion) V. Scattering matrix ensembles (Fundamental symmetries, Chaotic scattering, Circular ensembles, Topological quantum numbers) VI. Electrical conduction (Majorana nanowire, Counting Majorana zero-modes, Conductance distribution, Weak antilocalization, Andreev resonances, Shot noise of Majorana edge modes) VII. Thermal conduction (Topological phase transitions, Super-universality, Heat transport by Majorana edge modes, Thermopower and time-delay matrix, Andreev billiard with chiral symmetry) VIII. Josephson junctions (Fermion parity switches, 4{pi}-periodic Josephson effect, Discrete vortices) IX. Conclusion
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا