ترغب بنشر مسار تعليمي؟ اضغط هنا

The OLYMPUS Experiment

140   0   0.0 ( 0 )
 نشر من قبل Douglas Hasell
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The OLYMPUS experiment was designed to measure the ratio between the positron-proton and electron-proton elastic scattering cross sections, with the goal of determining the contribution of two-photon exchange to the elastic cross section. Two-photon exchange might resolve the discrepancy between measurements of the proton form factor ratio, $mu_p G^p_E/G^p_M$, made using polarization techniques and those made in unpolarized experiments. OLYMPUS operated on the DORIS storage ring at DESY, alternating between 2.01~GeV electron and positron beams incident on an internal hydrogen gas target. The experiment used a toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight detectors to measure rates for elastic scattering over the polar angular range of approximately $25^circ$--$75^circ$. Symmetric M{o}ller/Bhabha calorimeters at $1.29^circ$ and telescopes of GEM and MWPC detectors at $12^circ$ served as luminosity monitors. A total luminosity of approximately 4.5~fb$^{-1}$ was collected over two running periods in 2012. This paper provides details on the accelerator, target, detectors, and operation of the experiment.



قيم البحث

اقرأ أيضاً

The OLYMPUS experiment used a 0.3 T toroidal magnetic spectrometer to measure the momenta of outgoing charged particles. In order to accurately determine particle trajectories, knowledge of the magnetic field was needed throughout the spectrometer vo lume. For that purpose, the magnetic field was measured at over 36,000 positions using a three-dimensional Hall probe actuated by a system of translation tables. We used these field data to fit a numerical magnetic field model, which could be employed to calculate the magnetic field at any point in the spectrometer volume. Calculations with this model were computationally intensive; for analysis applications where speed was crucial, we pre-computed the magnetic field and its derivatives on an evenly spaced grid so that the field could be interpolated between grid points. We developed a spline-based interpolation scheme suitable for SIMD implementations, with a memory layout chosen to minimize space and optimize the cache behavior to quickly calculate field values. This scheme requires only one-eighth of the memory needed to store necessary coefficients compared with a previous scheme [1]. This method was accurate for the vast majority of the spectrometer volume, though special fits and representations were needed to improve the accuracy close to the magnet coils and along the toroid axis.
269 - N. J. Ayres 2021
We present the design of a next-generation experiment, n2EDM, currently under construction at the ultracold neutron source at the Paul Scherrer Institute (PSI) with the aim of carrying out a high-precision search for an electric dipole moment of the neutron. The project builds on experience gained with the previous apparatus operated at PSI until 2017, and is expected to deliver an order of magnitude better sensitivity with provision for further substantial improvements. An overview is given of the experimental method and setup, the sensitivity requirements for the apparatus are derived, and its technical design is described.
The GERmanium Detector Array (GERDA) collaboration searched for neutrinoless double-$beta$ decay in $^{76}$Ge with an array of about 40 high-purity isotopically-enriched germanium detectors. The experimental signature of the decay is a monoenergetic signal at Q$_{betabeta}$ = 2039.061(7)keV in the measured summed energy spectrum of the two emitted electrons. Both the energy reconstruction and resolution of the germanium detectors are crucial to separate a potential signal from various backgrounds, such as neutrino-accompanied double-$beta$ decays allowed by the Standard Model. The energy resolution and stability were determined and monitored as a function of time using data from regular $^{228}$Th calibrations. In this work, we describe the calibration process and associated data analysis of the full GERDA dataset, tailored to preserve the excellent resolution of the individual germanium detectors when combining data over several years.
The MAJORANA DEMONSTRATOR neutrinoless double beta-decay experiment is currently under construction at the Sanford Underground Research Facility in South Dakota, USA. An overview and status of the experiment are given.
The Cryogenic Underground Observatory for Rare Events (CUORE) is the first cryogenic experiment searching for neutrinoless double-beta ($0 ubetabeta$) decay that has been able to reach the one-ton scale. The detector, located at the Laboratori Nazion ali del Gran Sasso in Italy, consists of an array of 988 TeO$_2$ crystals arranged in a compact cylindrical structure of 19 towers. Following the completion of the detector construction in August 2016, CUORE began its first physics data run in 2017 at a base temperature of about 10 mK. Following multiple optimization campaigns in 2018, CUORE is currently in stable operating mode. In 2019, CUORE released its 2textsuperscript{nd} result of the search for $0 ubetabeta$ with a TeO$_2$ exposure of 372.5 kg$cdot$yr and a median exclusion sensitivity to a $^{130}$Te $0 ubetabeta$ decay half-life of $1.7cdot 10^{25}$ yr. We find no evidence for $0 ubetabeta$ decay and set a 90% C.I. (credibility interval) Bayesian lower limit of $3.2cdot 10^{25}$ yr on the $^{130}$Te $0 ubetabeta$ decay half-life. In this work, we present the current status of CUOREs search for $0 ubetabeta$, as well as review the detector performance. Finally, we give an update of the CUORE background model and the measurement of the $^{130}$Te two neutrino double-beta ($2 ubetabeta$) decay half-life.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا