ﻻ يوجد ملخص باللغة العربية
The Cryogenic Underground Observatory for Rare Events (CUORE) is the first cryogenic experiment searching for neutrinoless double-beta ($0 ubetabeta$) decay that has been able to reach the one-ton scale. The detector, located at the Laboratori Nazionali del Gran Sasso in Italy, consists of an array of 988 TeO$_2$ crystals arranged in a compact cylindrical structure of 19 towers. Following the completion of the detector construction in August 2016, CUORE began its first physics data run in 2017 at a base temperature of about 10 mK. Following multiple optimization campaigns in 2018, CUORE is currently in stable operating mode. In 2019, CUORE released its 2textsuperscript{nd} result of the search for $0 ubetabeta$ with a TeO$_2$ exposure of 372.5 kg$cdot$yr and a median exclusion sensitivity to a $^{130}$Te $0 ubetabeta$ decay half-life of $1.7cdot 10^{25}$ yr. We find no evidence for $0 ubetabeta$ decay and set a 90% C.I. (credibility interval) Bayesian lower limit of $3.2cdot 10^{25}$ yr on the $^{130}$Te $0 ubetabeta$ decay half-life. In this work, we present the current status of CUOREs search for $0 ubetabeta$, as well as review the detector performance. Finally, we give an update of the CUORE background model and the measurement of the $^{130}$Te two neutrino double-beta ($2 ubetabeta$) decay half-life.
With 741 kg of TeO2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, the CUORE (Cryogenic Underground Observatory for Rare Events) experiment aims at searching for neutrinoless double beta decay of 130Te with unp
CUORE is a 741 kg array of TeO2 bolometers for the search of neutrinoless double beta decay of 130Te. The detector is being constructed at the Laboratori Nazionali del Gran Sasso, Italy, where it will start taking data in 2015. If the target backgrou
CUORE-0 is a cryogenic detector that uses an array of tellurium dioxide bolometers to search for neutrinoless double-beta decay of ^{130}Te. We present the first data analysis with 7.1 kg y of total TeO_2 exposure focusing on background measurements
Neutrinoless double-beta decay searches play a major role in determining the nature of neutrinos, the existence of a lepton violating process, and the effective Majorana neutrino mass. The MAJORANA Collaboration assembled an array of high purity Ge d
The Cryogenic Underground Observatory for Rare Events (CUORE) is designed to search for neutrinoless double beta decay of 130Te with an array of 988 TeO2 bolometers operating at temperatures around 10 mK. The experiment is currently being commissione