ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray monitoring of classical novae in the central region of M31. III. Autumn and winter 2009/10, 2010/11 and 2011/12

117   0   0.0 ( 0 )
 نشر من قبل Martin Henze
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

[Abridged] Classical novae (CNe) represent the major class of supersoft X-ray sources (SSSs) in the central region of our neighbouring galaxy M31. We performed a dedicated monitoring of the M31 central region, aimed to detect SSS counterparts of CNe, with XMM-Newton and Chandra between Nov and Mar of the years 2009/10, 2010/11 and 2011/12. In total we detected 24 novae in X-rays. Seven of these sources were known from previous observations, including the M31 nova with the longest SSS phase, M31N~1996-08b, which was found to fade below our X-ray detection limit 13.8 yr after outburst. Of the new discoveries several novae exhibit significant variability in their short-term X-ray light curves with one object showing a suspected period of about 1.3 h. We studied the SSS state of the most recent outburst of a recurrent nova which had previously shown the shortest time ever observed between two outbursts (about 5 yr). The total number of M31 novae with X-ray counterpart was increased to 79 and we subjected this extended catalogue to detailed statistical studies. Four previously indicated correlations between optical and X-ray parameters could be confirmed and improved. We found indications that the multi-dimensional parameter space of nova properties might be dominated by a single physical parameter. We discuss evidence for a different X-ray behaviour of novae in the M31 bulge and disk. Exploration of the multi-wavelength parameter space of optical and X-ray measurements is shown to be a powerful tool for examining properties of extragalactic nova populations. While there are hints that the different stellar populations of M31 (bulge vs disk) produce dissimilar nova outbursts, there is also growing evidence that the overall behaviour of an average nova might be understood in surprisingly simple terms.



قيم البحث

اقرأ أيضاً

138 - M. Henze , W. Pietsch , F. Haberl 2010
[Abridged] Classical novae (CNe) represent the major class of supersoft X-ray sources (SSSs) in the central region of our neighbouring galaxy M 31. We performed a dedicated monitoring of the M 31 central region with XMM-Newton and Chandra between Nov 2007 and Feb 2008 and between Nov 2008 and Feb 2009 respectively, in order to find SSS counterparts of CNe, determine the duration of their SSS phase and derive physical outburst parameters. We systematically searched our data for X-ray counterparts of CNe and determined their X-ray light curves and spectral properties. We detected in total 17 X-ray counterparts of CNe in M 31, only four of which were known previously. These latter sources are still active 12.5, 11.0, 7.4 and 4.8 years after the optical outburst. From the 17 X-ray counterparts 13 were classified as SSSs. Four novae displayed short SSS phases (< 100 d). Based on these results and previous studies we compiled a catalogue of all novae with SSS counterparts in M 31 known so far. We used this catalogue to derive correlations between the following X-ray and optical nova parameters: turn-on time, turn-off time, effective temperature (X-ray), t2 decay time and expansion velocity of the ejected envelope (optical). Furthermore, we found a first hint for the existence of a difference between SSS parameters of novae associated with the stellar populations of the M 31 bulge and disk. Additionally, we conducted a Monte Carlo Markov Chain simulation on the intrinsic fraction of novae with SSS phase. This simulation showed that the relatively high fraction of novae without detected SSS emission might be explained by the inevitably incomplete coverage with X-ray observations in combination with a large fraction of novae with short SSS states, as expected from the WD mass distribution. In order to verify our results with an increased sample further monitoring observations are needed.
159 - Marina Orio 2012
X-ray grating spectra have opened a new window on the nova physics. High signal-to-noise spectra have been obtained for 12 novae after the outburst in the last 13 years with the Chandra and XMM-Newton gratings. They offer the only way to probe the temperature, effective gravity and chemical composition of the hydrogen burning white dwarf before it turns off. These spectra also allow an analysis of the ejecta, which can be photoionized by the hot white dwarf, but more often seem to undergo collisional ionization. The long observations required for the gratings have revealed semi-regular and irregular variability in X-ray flux and spectra. Large short term variability is especially evident in the first weeks after the ejecta have become transparent to the central supersoft X-ray source. Thanks to Chandra and XMM-Newton, we have discovered violent phenomena in the ejecta, discrete shell ejection, and clumpy emission regions. As expected, we have also unveiled the white dwarf characteristics. The peak white dwarf effective temperature in the targets of our samples varies between ~400,000 K and over a million K, with most cases closer to the upper end, although for two novae only upper limits around 200,000 K were obtained. A combination of results from different X-ray satellites and instruments, including Swift and ROSAT, shows that the shorter is the supersoft X-ray phase, the lower is the white dwarf peak effective temperature, consistently with theoretical predictions. The peak temperature is also inversely correlated with t(2) the time for a decay by 2 mag in optical. I strongly advocate the use of white dwarf atmospheric models to obtain a coherent physical picture of the hydrogen burning process and of the surrounding ejecta.
201 - M. Hernanz , G. Sala (2 2009
Detection of X-rays from classical novae, both in outburst and post-outburst, provides unique and crucial information about the explosion mechanism. Soft X-rays reveal the hot white dwarf photosphere, whenever hydrogen (H) nuclear burning is still on and expanding envelope is transparent enough, whereas harder X-rays give information about the ejecta and/or the accretion flow in the reborn cataclysmic variable. The duration of the supersoft X-ray emission phase is related to the turn-off of the classical nova, i.e., of the H-burning on top of the white dwarf core. A review of X-ray observations is presented, with a special emphasis on the implications for the duration of post-outburst steady H-burning and its theoretical explanation. The particular case of recurrent novae (both the standard objects and the recently discovered ones) is also reviewed, in terms of theoretical feasibility of short recurrence periods, as well as regarding implications for scenarios of type Ia supernovae.
The radio galaxy 3C 84 is a representative of gamma-ray-bright misaligned active galactic nuclei (AGNs) and one of the best laboratories to study the radio properties of the sub-pc jet in connection with the gamma-ray emission. In order to identify p ossible radio counterparts of the gamma-ray emissions in 3C 84, we study the change in structure within the central 1 pc and the light curve of sub-pc-size components C1, C2, and C3. We search for any correlation between changes in the radio components and the gamma-ray flares by making use of VLBI and single dish data. Throughout the radio monitoring spanning over two GeV gamma-ray flares detected by the {it Fermi}-LAT and the MAGIC Cherenkov Telescope in the periods of 2009 April to May and 2010 June to August, total flux density in radio band increases on average. This flux increase mostly originates in C3. Although the gamma-ray flares span on the timescale of days to weeks, no clear correlation with the radio light curve on this timescale is found. Any new prominent components and change in morphology associated with the gamma-ray flares are not found on the VLBI images.
The GOES M2-class solar flare, SOL2010-06-12T00:57, was modest in many respects yet exhibited remarkable acceleration of energetic particles. The flare produced an ~50 s impulsive burst of hard X- and gamma-ray emission up to at least 400 MeV observe d by the Fermi GBM and LAT experiments. The remarkably similar hard X-ray and high-energy gamma-ray time profiles suggest that most of the particles were accelerated to energies >300 MeV with a delay of ~10 s from mildly relativistic electrons, but some reached these energies in as little as ~3 s. The gamma-ray line fluence from this flare was about ten times higher than that typically observed from this modest GOES class of X-ray flare. There is no evidence for time-extended >100 MeV emission as has been found for other flares with high-energy gamma rays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا