ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray monitoring of classical novae in the central region of M 31. II. Autumn and winter 2007/2008 and 2008/2009

86   0   0.0 ( 0 )
 نشر من قبل Martin Henze
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

[Abridged] Classical novae (CNe) represent the major class of supersoft X-ray sources (SSSs) in the central region of our neighbouring galaxy M 31. We performed a dedicated monitoring of the M 31 central region with XMM-Newton and Chandra between Nov 2007 and Feb 2008 and between Nov 2008 and Feb 2009 respectively, in order to find SSS counterparts of CNe, determine the duration of their SSS phase and derive physical outburst parameters. We systematically searched our data for X-ray counterparts of CNe and determined their X-ray light curves and spectral properties. We detected in total 17 X-ray counterparts of CNe in M 31, only four of which were known previously. These latter sources are still active 12.5, 11.0, 7.4 and 4.8 years after the optical outburst. From the 17 X-ray counterparts 13 were classified as SSSs. Four novae displayed short SSS phases (< 100 d). Based on these results and previous studies we compiled a catalogue of all novae with SSS counterparts in M 31 known so far. We used this catalogue to derive correlations between the following X-ray and optical nova parameters: turn-on time, turn-off time, effective temperature (X-ray), t2 decay time and expansion velocity of the ejected envelope (optical). Furthermore, we found a first hint for the existence of a difference between SSS parameters of novae associated with the stellar populations of the M 31 bulge and disk. Additionally, we conducted a Monte Carlo Markov Chain simulation on the intrinsic fraction of novae with SSS phase. This simulation showed that the relatively high fraction of novae without detected SSS emission might be explained by the inevitably incomplete coverage with X-ray observations in combination with a large fraction of novae with short SSS states, as expected from the WD mass distribution. In order to verify our results with an increased sample further monitoring observations are needed.

قيم البحث

اقرأ أيضاً

66 - M. Henze , W. Pietsch , F. Haberl 2013
[Abridged] Classical novae (CNe) represent the major class of supersoft X-ray sources (SSSs) in the central region of our neighbouring galaxy M31. We performed a dedicated monitoring of the M31 central region, aimed to detect SSS counterparts of CNe, with XMM-Newton and Chandra between Nov and Mar of the years 2009/10, 2010/11 and 2011/12. In total we detected 24 novae in X-rays. Seven of these sources were known from previous observations, including the M31 nova with the longest SSS phase, M31N~1996-08b, which was found to fade below our X-ray detection limit 13.8 yr after outburst. Of the new discoveries several novae exhibit significant variability in their short-term X-ray light curves with one object showing a suspected period of about 1.3 h. We studied the SSS state of the most recent outburst of a recurrent nova which had previously shown the shortest time ever observed between two outbursts (about 5 yr). The total number of M31 novae with X-ray counterpart was increased to 79 and we subjected this extended catalogue to detailed statistical studies. Four previously indicated correlations between optical and X-ray parameters could be confirmed and improved. We found indications that the multi-dimensional parameter space of nova properties might be dominated by a single physical parameter. We discuss evidence for a different X-ray behaviour of novae in the M31 bulge and disk. Exploration of the multi-wavelength parameter space of optical and X-ray measurements is shown to be a powerful tool for examining properties of extragalactic nova populations. While there are hints that the different stellar populations of M31 (bulge vs disk) produce dissimilar nova outbursts, there is also growing evidence that the overall behaviour of an average nova might be understood in surprisingly simple terms.
M87 is a nearby radio galaxy that is detected at energies ranging from radio to VHE gamma-rays. Its proximity and its jet, misaligned from our line-of-sight, enable detailed morphological studies and extensive modeling at radio, optical, and X-ray en ergies. Flaring activity was observed at all energies, and multi-wavelength correlations would help clarify the origin of the VHE emission. In this paper, we describe a detailed temporal and spectral analysis of the VERITAS VHE gamma-ray observations of M87 in 2008 and 2009. In the 2008 observing season, VERITAS detected an excess with a statistical significance of 7.2 sigma from M87 during a joint multi-wavelength monitoring campaign conducted by three major VHE experiments along with the Chandra X-ray Observatory. In February 2008, VERITAS observed a VHE flare from M87 occurring over a 4-day timespan. The peak nightly flux above 250GeV was 7.7% of the Crab Nebula flux. M87 was marginally detected before this 4-day flare period, and was not detected afterwards. Spectral analysis of the VERITAS observations showed no significant change in the photon index between the flare and pre-flare states. Shortly after the VHE flare seen by VERITAS, the Chandra X-ray Observatory detected the flux from the core of M87 at a historical maximum, while the flux from the nearby knot HST-1 remained quiescent. Acciari et al. (2009) presented the 2008 contemporaneous VHE gamma-ray, Chandra X-ray, and VLBA radio observations which suggest the core as the most likely source of VHE emission, in contrast to the 2005 VHE flare that was simultaneous with an X-ray flare in the HST-1 knot. In 2009, VERITAS continued its monitoring of M87 and marginally detected a 4.2 sigma excess corresponding to a flux of ~1% of the Crab Nebula. No VHE flaring activity was observed in 2009.
Models of nova outbursts suggest that an X-ray flash should occur just after hydrogen ignition. However, this X-ray flash has never been observationally confirmed. We present four theoretical light curves of the X-ray flash for two very massive white dwarfs (WDs) of 1.380 and 1.385 M_sun and for two recurrence periods of 0.5 and 1 years. The duration of the X-ray flash is shorter for a more massive WD and for a longer recurrence period. The shortest duration of 14 hours (0.6 days) among the four cases is obtained for the 1.385 M_sun WD with one year recurrence period. In general, a nova explosion is relatively weak for a very short recurrence period, which results in a rather slow evolution toward the optical peak. This slow timescale and the predictability of very short recurrence period novae give us a chance to observe X-ray flashes of recurrent novae. In this context, we report the first attempt, using the Swift observatory, to detect an X-ray flash of the recurrent nova M31N 2008-12a (0.5 or 1 year recurrence period), which resulted in the non-detection of X-ray emission during the period of 8 days before the optical detection. We discuss the impact of these observations on nova outburst theory. The X-ray flash is one of the last frontiers of nova studies and its detection is essentially important to understand the pre-optical-maximum phase. We encourage further observations.
The HBL-type blazar Markarian 421 is one of the brightest TeV gamma-ray sources of the Northern sky. From December 2007 until June 2008 it was intensively observed in the VHE (E>100 GeV) band by the MAGIC gamma-ray telescope. The source showed intens e and prolonged activity during the whole period. In some nights the integral flux rose up to 3.6 Crab units (E>200 GeV). Intra-night rapid flux variations were observed. We compared the optical (KVA) and X-ray (RXTE-ASM, Swift-XRT) data with the MAGIC VHE data, investigating the correlations between different energy bands.
We describe the highly variable X-ray and UV emission of V458 Vul (Nova Vul 2007), observed by Swift between 1 and 422 days after outburst. Initially bright only in the UV, V458 Vul became a variable hard X-ray source due to optically thin thermal em ission at kT=0.64 keV with an X-ray band unabsorbed luminosity of 2.3x10^{34} erg s^{-1} during days 71-140. The X-ray spectrum at this time requires a low Fe abundance (0.2^{+0.3}_{-0.1} solar), consistent with a Suzaku measurement around the same time. On day 315 we find a new X-ray spectral component which can be described by a blackbody with temperature of kT=23^{+9}_{-5} eV, while the previous hard X-ray component has declined by a factor of 3.8. The spectrum of this soft X-ray component resembles those typically seen in the class of supersoft sources (SSS) which suggests that the nova ejecta were starting to clear and/or that the WD photosphere is shrinking to the point at which its thermal emission reaches into the X-ray band. We find a high degree of variability in the soft component with a flare rising by an order of magnitude in count rate in 0.2 days. In the following observations on days 342.4-383.6, the soft component was not seen, only to emerge again on day 397. The hard component continued to evolve, and we found an anticorrelation between the hard X-ray emission and the UV emission, yielding a Spearman rank probability of 97%. After day 397, the hard component was still present, was variable, and continued to fade at an extremely slow rate but could not be analysed owing to pile up contamination from the bright SSS component.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا