ﻻ يوجد ملخص باللغة العربية
We investigate the uniform spin susceptibility $chi_{rm s}$ in the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover regime of an ultracold Fermi gas. Including pairing fluctuations within the framework of an extended $T$-matrix approximation, we show that $chi_{rm s}$ exhibits non-monotonic temperature dependence in the normal state. In particular, $chi_{rm s}$ is suppressed near the superfluid phase transition temperature $T_{rm c}$ due to strong pairing fluctuations. To characterize this anomalous behavior, we introduce the spin-gap temperature $T_{rm s}$ as the temperature at which $chi_{rm s}$ takes a maximum value. Determining $T_{rm s}$ in the whole BCS-BEC crossover region, we identify the spin-gap regime in the phase diagram of a Fermi gas in terms of the temperature and the strength of a pairing interaction. We also clarify how the spin-gap phenomenon is related to the pseudogap phenomenon appearing in the single-particle density of states. Our results indicate that an ultracold Fermi gas in the BCS-BEC crossover region is a very useful system to examine the pseudogap phenomenon and the spin-gap phenomenon in a unified manner.
We theoretically investigate the uniform spin susceptibility $chi$ in the superfluid phase of an ultracold Fermi gas in the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover region. In our previous paper [H. Tajima, {it et. a
In this work, we study the BCS-BEC crossover and quantum phase transition in a Fermi gas under Rashba spin-orbit coupling close to a Feshbach resonance. By adopting a two-channel model, we take into account of the closed channel molecules, and show t
We investigate the photoemission-type spectrum in a cold Fermi gas which was recently measured by JILA group [J. T. Stewart {it et al}., Nature textbf{454}, 744 (2008)]. This quantity gives us very useful information about single-particle properties
We theoretically investigate excitation properties in the pseudogap regime of a trapped Fermi gas. Using a combined $T$-matrix theory with the local density approximation, we calculate strong-coupling corrections to single-particle local density of s
We investigate strong-coupling effects on normal state properties of an ultracold Fermi gas. Within the framework of $T$-matrix approximation in terms of pairing fluctuations, we calculate the single-particle density of states (DOS), as well as the s