ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-particle properties and pseudogap effects in the BCS-BEC crossover regime of an ultracold Fermi gas above Tc

151   0   0.0 ( 0 )
 نشر من قبل Shunji Tsuchiya
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate strong-coupling effects on normal state properties of an ultracold Fermi gas. Within the framework of $T$-matrix approximation in terms of pairing fluctuations, we calculate the single-particle density of states (DOS), as well as the spectral weight, over the entire BCS-BEC crossover region above the superfluid phase transition temperature $T_{rm c}$. Starting from the weak-coupling BCS regime, we show that the so-called pseudogap develops in DOS above $T_{rm c}$, which becomes remarkable in the crossover region. The pseudogap structure continuously changes into a fully gapped one in the strong-coupling BEC regime, where the gap energy is directly related to the binding energy of tightly bound molecules. We determine the pseudogap temperature $T^*$ where the dip structure in DOS vanishes. The value of $T^*$ is shown to be very different from another characteristic temperature $T^{**}$ where a BCS-type double peak structure disappears in the spectral weight. While one finds $T^*>T^{**}$ in the BCS regime, $T^{**}$ becomes higher than $T^*$ in the crossover region and BEC regime. Including this, we determine the pseudogap region in the phase diagram of ultracold Fermi gases. Our results would be useful in the search for the pseudogap region in ultracold $^6$Li and $^{40}$K Fermi gases.



قيم البحث

اقرأ أيضاً

We theoretically investigate excitation properties in the pseudogap regime of a trapped Fermi gas. Using a combined $T$-matrix theory with the local density approximation, we calculate strong-coupling corrections to single-particle local density of s tates (LDOS), as well as the single-particle local spectral weight (LSW). Starting from the superfluid phase transition temperature $T_{rm c}$, we clarify how the pseudogap structures in these quantities disappear with increasing the temperature. As in the case of a uniform Fermi gas, LDOS and LSW give different pseudogap temperatures $T^*$ and $T^{**}$ at which the pseudogap structures in these quantities completely disappear. Determining $T^*$ and $T^{**}$ over the entire BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensate) crossover region, we identify the pseudogap regime in the phase diagram with respect to the temperature and the interaction strength. We also show that the so-called back-bending peak recently observed in the photoemission spectra by JILA group may be explained as an effect of pseudogap phenomenon in the trap center. Since strong pairing fluctuations, spatial inhomogeneity, and finite temperatures, are important keys in considering real cold Fermi gases, our results would be useful for clarifying normal state properties of this strongly interacting Fermi system.
We investigate the uniform spin susceptibility $chi_{rm s}$ in the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover regime of an ultracold Fermi gas. Including pairing fluctuations within the framework of an extended $T$-mat rix approximation, we show that $chi_{rm s}$ exhibits non-monotonic temperature dependence in the normal state. In particular, $chi_{rm s}$ is suppressed near the superfluid phase transition temperature $T_{rm c}$ due to strong pairing fluctuations. To characterize this anomalous behavior, we introduce the spin-gap temperature $T_{rm s}$ as the temperature at which $chi_{rm s}$ takes a maximum value. Determining $T_{rm s}$ in the whole BCS-BEC crossover region, we identify the spin-gap regime in the phase diagram of a Fermi gas in terms of the temperature and the strength of a pairing interaction. We also clarify how the spin-gap phenomenon is related to the pseudogap phenomenon appearing in the single-particle density of states. Our results indicate that an ultracold Fermi gas in the BCS-BEC crossover region is a very useful system to examine the pseudogap phenomenon and the spin-gap phenomenon in a unified manner.
We investigate the photoemission-type spectrum in a cold Fermi gas which was recently measured by JILA group [J. T. Stewart {it et al}., Nature textbf{454}, 744 (2008)]. This quantity gives us very useful information about single-particle properties in the BCS-BEC crossover. In this letter, including pairing fluctuations within a $T$-matrix theory, as well as effects of a harmonic trap within the local density approximation, we show that spatially inhomogeneous pairing fluctuations due to the trap potential is an important key to understand the observed spectrum. In the crossover region, while strong pairing fluctuations lead to the so-called pseudogap phenomenon in the trap center, such strong-coupling effects are found to be weak around the edge of the gas. Our results including this effect are shown to agree well with the recent photoemission data by JILA group.
159 - Fan Wu , Ren Zhang , Tian-Shu Deng 2014
In this work, we study the BCS-BEC crossover and quantum phase transition in a Fermi gas under Rashba spin-orbit coupling close to a Feshbach resonance. By adopting a two-channel model, we take into account of the closed channel molecules, and show t hat combined with spin-orbit coupling, a finite background scattering in the open channel can lead to two branches of solution for both the two-body and the many-body ground states. The branching of the two-body bound state solution originates from the avoided crossing between bound states in the open and the closed channels, respectively. For the many-body states, we identify a quantum phase transition in the upper branch regardless of the sign of the background scattering length, which is in clear contrast to the case without spin-orbit coupling. For systems with negative background scattering length in particular, we show that the bound state in the open channel, and hence the quantum phase transition in the upper branch, are induced by spin-orbit coupling. We then characterize the critical detuning of the quantum phase transition for both positive and negative background scattering lengths, and demonstrate the optimal parameters for the critical point to be probed experimentally.
Strongly correlated Fermi systems with pairing interactions become superfluid below a critical temperature $T_c$. The extent to which such pairing correlations alter the behavior of the liquid at temperatures $T > T_c$ is a subtle issue that remains an area of debate, in particular regarding the appearance of the so-called pseudogap in the BCS-BEC crossover of unpolarized spin-$1/2$ nonrelativistic matter. To shed light on this, we extract several quantities of crucial importance at and around the unitary limit, namely: the odd-even staggering of the total energy, the spin susceptibility, the pairing correlation function, the condensate fraction, and the critical temperature $T_c$, using a non-perturbative, constrained-ensemble quantum Monte Carlo algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا