ترغب بنشر مسار تعليمي؟ اضغط هنا

Visualization of the effect of structural supermodulation on electronic structure in IrTe$_{2}$ by scanning tunneling spectroscopy

45   0   0.0 ( 0 )
 نشر من قبل Tadashi Machida
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the scanning tunneling spectroscopy experiments on single crystals of IrTe$_{2}$. A structural supermodulation and a local density-of-states (LDOS) modulation with a wave vector of $q$ = 1/5$times$$2pi /a_{0}$ ($a_{0}$ is the lattice constant in the $ab$-plane) have been observed at 4.2K where the sample is in the monoclinic phase. %We cannot find an energy gap emerging reproducibly.% on the region where the supermodulation resides. As synchronized with the supermodulation, the LDOS spatially modulates within two energy ranges (below -200 meV and around -100 meV). We further investigated the effect of the local perturbations including the antiphase boundaries and the twin boundaries on the LDOS. These perturbations also modify the LDOS below -200 meV and around -100 meV, even though the lattice distortions induced by these perturbations appear to be different from those by the supermodulation. Our results indicating several microscopic structural effects on the LDOS seem to offer crucial keys for the establishment of the microscopic model describing the parent state.

قيم البحث

اقرأ أيضاً

As emerging topological nodal-line semimetals, the family of ZrSiX (X = O, S, Se, Te) has attracted broad interests in condensed matter physics due to their future applications in spintonics. Here, we apply a scanning tunneling microscopy (STM) to st udy the structural symmetry and electronic topology of ZrSiSe. The glide mirror symmetry is verified by quantifying the lattice structure of the ZrSe bilayer based on bias selective topographies. The quasiparticle interference analysis is used to identify the band structure of ZrSiSe. The nodal line is experimentally determined at $sim$ 250 meV above the Fermi level. An extra surface state Dirac point at $sim$ 400 meV below the Fermi level is also determined. Our STM measurement provides a direct experimental evidence of the nodal-line state in the family of ZrSiX.
SmB$_6$, a so called Kondo insulator, is recently discussed as a candidate material for a strong topological insulator. We present detailed atomically resolved topographic information on the (001) surface from more than a dozen SmB$_6$ samples. Atomi cally flat, {it in situ} cleaved surfaces often exhibit B- and Sm-terminated surfaces as well as reconstructed and non-reconstructed areas {it coexisting} on different length scales. The terminations are unambiguously identified. In addition, electronic inhomogeneities are observed which likely result from the polar nature of the (001) surface and may indicate an inhomogeneous Sm valence at the surface of SmB$_6$. In addition, atomically resolved topographies on a (110) surface are discussed.
We report on the Pt doping effect on surface and electronic structure in Ir$_{mathrm{1-x}}$Pt$_{mathrm{x}}$Te$_ {mathrm{2}}$ by scanning tunneling microscopy (STM) and spectroscopy (STS). The surface prepared by cleavage at 4.2 K shows a triangular l attice of topmost Te atoms. The compounds that undergo structural transition have supermodulation with a fixed wave vector $q = frac{2pi}{5a_m}$ (where $a_m$ is the lattice constant in the monoclinic phase) despite the different Pt concentrations. The superconducting compounds show patch structures. The surface of the compound that exhibits neither the superconductivity nor the structural transition shows no superstructure. In all doped samples, the dopant is observed as a dark spot in STM images. The tunneling spectra near the dopant show the change in the local density of state at approximately -200 mV. Such microscopic effects of the dopant give us the keys for establishing a microscopic model of this material.
The IrTe2 transition metal dichalcogenide undergoes a series of structural and electronic phase transitions when doped with Pt. The nature of each phase and the mechanism of the phase transitions have attracted much attention. In this paper, we repor t scanning tunneling microscopy and spectroscopy studies of Pt doped IrTe2 with varied Pt contents. In pure IrTe2, we find that the ground state has a 1/6 superstructure, and the electronic structure is inconsistent with Fermi surface nesting induced charge density wave order. Upon Pt doping, the crystal structure changes to a 1/5 superstructure and then to a quasi-periodic hexagonal phase. First principles calculations show that the superstructures and electronic structures are determined by the global chemical strain and local impurity states that can be tuned systematically by Pt doping.
We present extensive Scanning Tunneling Spectroscopy (STM/S) measurements at low temperatures in the multiband superconductor MgB$_2$. We find a similar behavior in single crystalline samples and in single grains, which clearly shows the partial supe rconducting density of states of both the $pi$ and $sigma$ bands of this material. The superconducting gaps corresponding to both bands are not single valued. Instead, we find a distribution of superconducting gaps centered around 1.9mV and 7.5mV, corresponding respectively to each set of bands. Interband scattering effects, leading to a single gap structure at 4mV and a smaller critical temperature can be observed in some locations on the surface. S-S junctions formed by pieces of MgB$_2$ attached to the tip clearly show the subharmonic gap structure associated with this type of junctions. We discuss future developments and possible new effects associated with the multiband nature of superconductivity in this compound.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا