ترغب بنشر مسار تعليمي؟ اضغط هنا

Visualizing the Pt doping effect on surface and electronic structure in Ir_{1-x}Pt_{x}Te_{2} by scanning tunneling microscopy and spectroscopy

47   0   0.0 ( 0 )
 نشر من قبل Yuita Fujisawa
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the Pt doping effect on surface and electronic structure in Ir$_{mathrm{1-x}}$Pt$_{mathrm{x}}$Te$_ {mathrm{2}}$ by scanning tunneling microscopy (STM) and spectroscopy (STS). The surface prepared by cleavage at 4.2 K shows a triangular lattice of topmost Te atoms. The compounds that undergo structural transition have supermodulation with a fixed wave vector $q = frac{2pi}{5a_m}$ (where $a_m$ is the lattice constant in the monoclinic phase) despite the different Pt concentrations. The superconducting compounds show patch structures. The surface of the compound that exhibits neither the superconductivity nor the structural transition shows no superstructure. In all doped samples, the dopant is observed as a dark spot in STM images. The tunneling spectra near the dopant show the change in the local density of state at approximately -200 mV. Such microscopic effects of the dopant give us the keys for establishing a microscopic model of this material.

قيم البحث

اقرأ أيضاً

The IrTe2 transition metal dichalcogenide undergoes a series of structural and electronic phase transitions when doped with Pt. The nature of each phase and the mechanism of the phase transitions have attracted much attention. In this paper, we repor t scanning tunneling microscopy and spectroscopy studies of Pt doped IrTe2 with varied Pt contents. In pure IrTe2, we find that the ground state has a 1/6 superstructure, and the electronic structure is inconsistent with Fermi surface nesting induced charge density wave order. Upon Pt doping, the crystal structure changes to a 1/5 superstructure and then to a quasi-periodic hexagonal phase. First principles calculations show that the superstructures and electronic structures are determined by the global chemical strain and local impurity states that can be tuned systematically by Pt doping.
The discovery of graphene has put the spotlight on other layered materials including transition metal dichalcogenites (TMD) as building blocks for novel heterostructures assembled from stacked atomic layers. Molybdenum disulfide, MoS2, a semiconducto r in the TMD family, with its remarkable thermal and chemical stability and high mobility, has emerged as a promising candidate for post-silicon applications such as switching, photonics, and flexible electronics. Since these rely on controlling the position of the Fermi energy (EF), it is crucial to understand its dependence on doping and gating. Here we employed scanning tunneling microscopy (STM) and spectroscopy (STS) with gating capabilities to measure the bandgap and the position of EF in MoS2, and to track its evolution with gate voltage. For bulk samples, the measured bandgap (~1.3eV) is comparable to the value obtained by photoluminescence, and the position of EF (~0.35eV) below the conduction band, is consistent with n-doping reported in this material. Using topography together with spectroscopy we traced the source of the n-doping in bulk MoS2 samples to point defects, which we attribute to S vacancies. In contrast, for thin films deposited on SiO2, we found significantly higher levels of n-doping that cannot be attributed to S vacancies. By combining gated STS with transport measurements in a field effect transistor (FET) configuration, we demonstrate that the higher levels of n-doping in thin film samples is due to charge traps at the sample-substrate interface.
SmB$_6$, a so called Kondo insulator, is recently discussed as a candidate material for a strong topological insulator. We present detailed atomically resolved topographic information on the (001) surface from more than a dozen SmB$_6$ samples. Atomi cally flat, {it in situ} cleaved surfaces often exhibit B- and Sm-terminated surfaces as well as reconstructed and non-reconstructed areas {it coexisting} on different length scales. The terminations are unambiguously identified. In addition, electronic inhomogeneities are observed which likely result from the polar nature of the (001) surface and may indicate an inhomogeneous Sm valence at the surface of SmB$_6$. In addition, atomically resolved topographies on a (110) surface are discussed.
The oxygen dopants are essential in tuning electronic properties of Bi$_2$Sr$_2$Ca$_{n-1}$Cu$_n$O$_{2n+4+delta}$ superconductors. Here we apply the technique of scanning tunneling microscopy and spectroscopy to study the influence of oxygen dopants i n an optimally doped Bi$_2$Sr$_{2-x}$La$_x$CuO$_{6+delta}$ and an overdoped Bi$_{2-y}$Pb$_y$Sr$_2$CuO$_{6+delta}$. In both samples, we find that interstitial oxygen atoms on the SrO layers dominate over the other two forms of oxygen dopants, oxygen vacancies on the SrO layers and interstitial oxygen atoms on the BiO layers. The hole doping is estimated from the oxygen concentration, as compared to the result extracted from the measured Fermi surface. The precise spatial location is employed to obtain a negative correlation between the oxygen dopants and the inhomogeneous pseudogap.
115 - F. Massee , S. de Jong , Y. Huang 2009
We elucidate the termination surface of cleaved single crystals of the BaFe_(2-x)Co_(x)As_(2) and Fe_(y)Se_(1-x)Te_(x) families of the high temperature iron based superconductors. By combining scanning tunneling microscopic data with low energy elect ron diffraction we prove that the termination layer of the Ba122 systems is a remnant of the Ba layer, which exhibits a complex diversity of ordered and disordered structures. The observed surface topographies and their accompanying superstructure reflections in electron diffraction depend on the cleavage temperature. In stark contrast, Fe_(y)Se_(1-x)Te_(x) possesses only a single termination structure - that of the tetragonally ordered Se_(1-x)Te_(x) layer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا