ترغب بنشر مسار تعليمي؟ اضغط هنا

Constrained Simulation of the Bullet Cluster

73   0   0.0 ( 0 )
 نشر من قبل Craig Lage
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we report on a detailed simulation of the Bullet Cluster (1E0657-56) merger, including magnetohydrodynamics, plasma cooling, and adaptive mesh refinement. We constrain the simulation with data from gravitational lensing reconstructions and 0.5 - 2 keV Chandra X-ray flux map, then compare the resulting model to higher energy X-ray fluxes, the extracted plasma temperature map, Sunyaev-Zeldovich effect measurements, and cluster halo radio emission. We constrain the initial conditions by minimizing the chi-squared figure of merit between the full 2D observational data sets and the simulation, rather than comparing only a few features such as the location of subcluster centroids, as in previous studies. A simple initial configuration of two triaxial clusters with NFW dark matter profiles and physically reasonable plasma profiles gives a good fit to the current observational morphology and X-ray emissions of the merging clusters. There is no need for unconventional physics or extreme infall velocities. The study gives insight into the astrophysical processes at play during a galaxy cluster merger, and constrains the strength and coherence length of the magnetic fields. The techniques developed here to create realistic, stable, triaxial clusters, and to utilize the totality of the 2D image data, will be applicable to future simulation studies of other merging clusters. This approach of constrained simulation, when applied to well-measured systems, should be a powerful complement to present tools for understanding X-ray clusters and their magnetic fields, and the processes governing their formation.

قيم البحث

اقرأ أيضاً

The thermal Sunyaev-Zeldovich (SZ) effect presents a relatively new tool for characterizing galaxy cluster merger shocks, traditionally studied through X-ray observations. Widely regarded as the textbook example of a cluster merger bow shock, the wes tern shock front in the Bullet Cluster (1E0657-56) represents the ideal test case for such an SZ study. We aim to reconstruct a parametric model for the shock SZ signal by directly and jointly fitting deep, high-resolution interferometric data from the Atacama Large Millimeter/submillimeter Array (ALMA) and Atacama Compact Array (ACA) in Fourier space. The ALMA+ACA data are primarily sensitive to the electron pressure difference across the shock front. To estimate the shock Mach number $M$, this difference can be combined with the value for the upstream electron pressure derived from an independent Chandra X-ray analysis. In the case of instantaneous electron-ion temperature equilibration, we find $M=2.08^{+0.12}_{-0.12}$, in $approx 2.4sigma$ tension with the independent constraint from Chandra, $M_X=2.74pm0.25$. The assumption of purely adiabatic electron temperature change across the shock leads to $M=2.53^{+0.33}_{-0.25}$, in better agreement with the X-ray estimate $M_X=2.57pm0.23$ derived for the same heating scenario. We have demonstrated that interferometric observations of the SZ effect provide constraints on the properties of the shock in the Bullet Cluster that are highly complementary to X-ray observations. The combination of X-ray and SZ data yields a powerful probe of the shock properties, capable of measuring $M$ and addressing the question of electron-ion equilibration in cluster shocks. Our analysis is however limited by systematics related to the overall cluster geometry and the complexity of the post-shock gas distribution. To overcome these limitations, a joint analysis of SZ and X-ray data is needed.
84 - Guilhem Lavaux 2009
We use the formalism of constrained Gaussian random field to compute a precise large scale simulation of the 60 Mpc/h volume of our Local Universe. We derive the constraints from the reconstructed peculiar velocities of the 2MASS Redshift Survey. We obtain a correlation of 0.97 between the log-density field of the dark matter distribution of the simulation and the log-density of observed galaxies of the Local Universe. We achieve a good comparison of the simulated velocity field to the observed velocity field obtained from the galaxy distances of the NBG-3k. At the end, we compare the two-point correlation function of both the 2MRS galaxies and of the dark matter particles of the simulation. We conclude that this method is a very promising technique of exploring the dynamics and the particularities the Universe in our neighbourhood.
We use deep, five band (100-500um) data from the Herschel Lensing Survey (HLS) to fully constrain the obscured star formation rate, SFR_FIR, of galaxies in the Bullet cluster (z=0.296), and a smaller background system (z=0.35) in the same field. Hers chel detects 23 Bullet cluster members with a total SFR_FIR = 144 +/- 14 M_sun yr^-1. On average, the background system contains brighter far-infrared (FIR) galaxies, with ~50% higher SFR_FIR (21 galaxies; 207 +/- 9 M_sun yr^-1). SFRs extrapolated from 24um flux via recent templates (SFR_24) agree well with SFR_FIR for ~60% of the cluster galaxies. In the remaining ~40%, SFR_24 underestimates SFR_FIR due to a significant excess in observed S_100/S_24 (rest frame S_75/S_18) compared to templates of the same FIR luminosity.
We present the first results of our spectroscopic follow-up of 6.5 < z < 10 candidate galaxies behind clusters of galaxies. We report the spectroscopic confirmation of an intrinsically faint Lyman break galaxy (LBG) identified as a z 850LP-band dropo ut behind the Bullet Cluster. We detect an emission line at {lambda} = 9412 {AA} at >5{sigma} significance using a 16 hr long exposure with FORS2 VLT. Based on the absence of flux in bluer broadband filters, the blue color of the source, and the absence of additional lines, we identify the line as Ly{alpha} at z = 6.740 pm 0.003. The integrated line flux is f = (0.7 pm 0.1 pm 0.3) times 10^{-17} erg^{-1} s^{-1} cm^{-2} (the uncertainties are due to random and flux calibration errors, respectively) making it the faintest Ly{alpha} flux detected at these redshifts. Given the magnification of {mu} = 3.0 pm 0.2 the intrinsic (corrected for lensing) flux is f^int = (0.23 pm 0.03 pm 0.10 pm 0.02) times 10^{-17} erg^{-1} s^{-1} cm^{-2} (additional uncertainty due to magnification), which is ~2-3 times fainter than other such measurements in z ~ 7 galaxies. The intrinsic H 160W-band magnitude of the object is m^int(H_160W)=27.57 pm 0.17, corresponding to 0.5 L* for LBGs at these redshifts. The galaxy is one of the two sub-L* LBG galaxies spectroscopically confirmed at these high redshifts (the other is also a lensed z = 7.045 galaxy), making it a valuable probe for the neutral hydrogen fraction in the early universe.
94 - M. Rex , T. D. Rawle , E. Egami 2010
The Herschel Lensing Survey (HLS) takes advantage of gravitational lensing by massive galaxy clusters to sample a population of high-redshift galaxies which are too faint to be detected above the confusion limit of current far-infrared/submillimeter telescopes. Measurements from 100-500 micron bracket the peaks of the far-infrared spectral energy distributions of these galaxies, characterizing their infrared luminosities and star formation rates. We introduce initial results from our science demonstration phase observations, directed toward the Bullet cluster (1E0657-56). By combining our observations with LABOCA 870 micron and AzTEC 1.1 mm data we fully constrain the spectral energy distributions of 19 MIPS 24 micron selected galaxies which are located behind the cluster. We find that their colors are best fit using templates based on local galaxies with systematically lower infrared luminosities.This suggests that our sources are not like local ultra-luminous infrared galaxies in which vigorous star formation is contained in a compact highly dust-obscured region. Instead, they appear to be scaled
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا