ترغب بنشر مسار تعليمي؟ اضغط هنا

Collective Autoionization in Multiply-Excited Systems: A novel ionization process observed in Helium Nanodroplets

116   0   0.0 ( 0 )
 نشر من قبل Aaron LaForge
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Free electron lasers (FELs) offer the unprecedented capability to study reaction dynamics and image the structure of complex systems. When multiple photons are absorbed in complex systems, a plasma-like state is formed where many atoms are ionized on a femtosecond timescale. If multiphoton absorption is resonantly-enhanced, the system becomes electronically-excited prior to plasma formation, with subsequent decay paths which have been scarcely investigated to date. Here, we show using helium nanodroplets as an example that these systems can decay by a new type of process, named collective autoionization. In addition, we show that this process is surprisingly efficient, leading to ion abundances much greater than that of direct single-photon ionization. This novel collective ionization process is expected to be important in many other complex systems, e.g. macromolecules and nanoparticles, exposed to high intensity radiation fields.



قيم البحث

اقرأ أيضاً

Clusters and nanodroplets hold the promise of enhancing high-order nonlinear optical effects due to their high local density. However, only moderate enhancement has been demonstrated to date. Here, we report the observation of energetic electrons gen erated by above-threshold ionization (ATI) of helium (He) nanodroplets which are resonantly excited by ultrashort extreme ultraviolet (XUV) free-electron laser pulses and subsequently ionized by near-infrared (NIR) or near-ultraviolet (UV) pulses. The electron emission due to high-order ATI is enhanced by several orders of magnitude compared to He atoms. The crucial dependence of the ATI intensities with the number of excitations in the droplets suggests a local collective enhancement effect.
The ionization dynamics of helium droplets in a wide size range from 220 to 10^6 He atoms irradiated with intense femtosecond extreme ultraviolet (XUV) pulses of 10^9 {div} 10^{12} W/cm2 power density is investigated in detail by photoelectron spectr oscopy. Helium droplets are resonantly excited in the photon energy range from ~ 21 eV (corresponding to the atomic 1s2s state) up to the atomic ionization potential (IP) at ~ 25 eV. A complex evolution of the electron spectra as a function of droplet size and XUV intensity is observed, ranging from atomic-like narrow peaks due to binary autoionization, to an unstructured feature characteristic of electron emission from a nanoplasma. The experimental results are analyzed and interpreted with the help of numerical simulations based on rate equations taking into account various processes such as multi-step ionization, interatomic Coulombic decay (ICD), secondary inelastic collisions, desorption of electronically excited atoms, collective autoionization (CAI) and further relaxation processes.
Interatomic Coulombic decay (ICD) is induced in helium (He) nanodroplets by photoexciting the n=2 excited state of He^+ using XUV synchrotron radiation. By recording multiple coincidence electron and ion images we find that ICD occurs in various loca tions at the droplet surface, inside the surface region, or in the droplet interior. ICD at the surface gives rise to energetic He^+ ions as previously observed for free He dimers. ICD deeper inside leads to the ejection of slow He^+ ions due to Coulomb explosion delayed by elastic collisions with neighboring He atoms, and to the formation of He_k^+ complexes.
Helium tagging in action spectroscopy is an efficient method for measuring the absorption spectrum of complex molecular ions with minimal perturbations to the gas phase spectrum. We have used superfluid helium nanodroplets doped with corannulene to p repare cations of these molecules complexed with different numbers of He atoms. In total we identify 13 different absorption bands from corannulene cations between 5500 {AA} and 6000 {AA}. The He atoms cause a small, chemically induced redshift to the band positions of the corannulene ion. By studying this effect as a function of the number of solvating atoms we are able to identify the formation of solvation structures that are not visible in the mass spectrum. The solvation features detected with the action spectroscopy agree very well with the results of atomistic modeling based on path-integral molecular dynamics simulations. By additionally doping our He droplets with D$_2$, we produce protonated corannulene ions. The absorption spectrum of these ions differs significantly from the case of the radical cations as the numerous narrow bands are replaced by a broad absorption feature that spans nearly 2000 {AA} in width.
We present the first measurement of a one-photon extreme-ultraviolet photoelectron spectrum (PES) of molecules embedded in superfluid helium nanodroplets. The PES of coronene is compared to gas phase and the solid phase PES, and to electron spectra o f embedded coronene generated by charge transfer and Penning ionization through ionized or excited helium. The resemblence of the He-droplet PES to the one of the solid phase indicates that mostly Cor clusters are photoionized. In contrast, the He-droplet Penning-ionization electron spectrum is nearly structureless, indicating strong perturbation of the ionization process by the He droplet. These results pave the way to extreme ultraviolet photoelectron spectroscopy (UPS) of clusters and molecular complexes embedded in helium nanodroplets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا