ترغب بنشر مسار تعليمي؟ اضغط هنا

A Tentative Description of Z_c,b States in Terms of Metastable Feshbach Resonances

66   0   0.0 ( 0 )
 نشر من قبل A. D. Polosa
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We attempt a description of the recently discovered Z_{c,b} states in terms of Feshbach resonances arising from the interaction between the `closed subspace of hadrocharmonium levels and the `open one of open-charm/beauty thresholds. We show how the neutrality of the X(3872) might be understood in this scheme and provide a preliminary explanation of the pattern of the measured total widths of X,Z_{c,b}.

قيم البحث

اقرأ أيضاً

85 - S. Knoop , M. Mark , F. Ferlaino 2008
We experimentally demonstrate Cs2 Feshbach molecules well above the dissociation threshold, which are stable against spontaneous decay on the timescale of one second. An optically trapped sample of ultracold dimers is prepared in an l-wave state and magnetically tuned into a region with negative binding energy. The metastable character of these molecules arises from the large centrifugal barrier in combination with negligible coupling to states with low rotational angular momentum. A sharp onset of dissociation with increasing magnetic field is mediated by a crossing with a g-wave dimer state and facilitates dissociation on demand with a well defined energy.
75 - Zhi-Hui Guo , J. A. Oller 2020
The newly observed hidden-charm tetraquark state $Z_{cs}(3985)$, together with $Z_c(3900)$ and $X(4020)$, are studied in the combined theoretical framework of the effective range expansion, compositeness relation and the decay width saturation. The e lastic effective-range-expansion approach leads to sensible results for the scattering lengths, effective ranges and the compositeness coefficients, $i.e.$, the probabilities to find the two-charm-meson molecule components in the tetraquark states. The coupled-channel formalism by including the $J/psipi$ and $Dbar{D}^*/bar{D}D^*$ to fulfill the constraints of the compositeness relation and the decay width, confirms the elastic effective-range-expansion results for the $Z_c(3900)$, by using the experimental inputs for the ratios of the decay widths between $Dbar{D}^*/bar{D}D^*$ and $J/psipi$. With the results from the elastic effective-range-expansion study as input for the compositeness, we generalize the discussions to the $Z_{cs}(3985)$ by including the $J/psi K^{-}$ and $D_s^{-}D^{*0}/D_s^{*-}D^{0}$, and predict the partial decay widths of the $J/psi K^{-}$. Similar calculations are also carried out for the $X(4020)$ by including the $h_cpi$ and $D^*bar{D}^*$, and the partial decay widths of the $h_cpi$ is predicted. Our results can provide useful guidelines for future experimental measurements.
Decay of bound states due to coupling with free particle states is a general phenomenon occurring at energy scales from MeV in nuclear physics to peV in ultracold atomic gases. Such a coupling gives rise to Fano-Feshbach resonances (FFR) that have be come key to understanding and controlling interactions - in ultracold atomic gases, but also between quasiparticles such as microcavity polaritons. The energy positions of FFR were shown to follow quantum chaotic statistics. In contrast, lifetimes which are the fundamental property of a decaying state, have so far escaped a similarly comprehensive understanding. Here we show that a bound state, despite being resonantly coupled to a scattering state, becomes protected from decay whenever the relative phase is a multiple of $pi$. We observe this phenomenon by measuring lifetimes spanning four orders of magnitude for FFR of spin-orbit excited molecular ions with merged beam and electrostatic trap experiments. Our results provide a blueprint for identifying naturally long-lived states in a decaying quantum system.
A rigorous quantum theory of atomic collisions in the presence of radio frequency (rf) magnetic fields is developed and applied to elucidate the effects of combined dc and rf magnetic fields on elastic scattering in ultracold collisions of Rb atoms. We show that rf fields can be used to induce Feshbach resonances, which can be tuned by varying the amplitude and frequency of the rf field. The rf-induced Feshbach resonances occur also in collisions of atoms in low-field-seeking states at moderate rf field strengths easily available in atom chip experiments, which opens up the world of tunable interactions to magnetically trappable atomic quantum gases.
Feshbach resonances are the essential tool to control the interaction between atoms in ultracold quantum gases. They have found numerous experimental applications, opening up the way to important breakthroughs. This Review broadly covers the phenomen on of Feshbach resonances in ultracold gases and their main applications. This includes the theoretical background and models for the description of Feshbach resonances, the experimental methods to find and characterize the resonances, a discussion of the main properties of resonances in various atomic species and mixed atomic species systems, and an overview of key experiments with atomic Bose-Einstein condensates, degenerate Fermi gases, and ultracold molecules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا