ﻻ يوجد ملخص باللغة العربية
We experimentally demonstrate Cs2 Feshbach molecules well above the dissociation threshold, which are stable against spontaneous decay on the timescale of one second. An optically trapped sample of ultracold dimers is prepared in an l-wave state and magnetically tuned into a region with negative binding energy. The metastable character of these molecules arises from the large centrifugal barrier in combination with negligible coupling to states with low rotational angular momentum. A sharp onset of dissociation with increasing magnetic field is mediated by a crossing with a g-wave dimer state and facilitates dissociation on demand with a well defined energy.
We explore the rich internal structure of Cs_2 Feshbach molecules. Pure ultracold molecular samples are prepared in a CO_2-laser trap, and a multitude of weakly bound states is populated by elaborate magnetic-field ramping techniques. Our methods use
We study the spontaneous dissociation of diatomic molecules produced in cold atomic gases via magnetically tunable Feshbach resonances. We provide a universal formula for the lifetime of these molecules that relates their decay to the scattering leng
We present measurements of the binding energies of $^6$Li p-wave Feshbach molecules formed in combinations of the (F = 1/2, m_F = +1/2), (1), and (F = 1/2, m_F = -1/2), (2), states. The binding energies scale linearly with magnetic field detuning for
Pairs of trapped atoms can be associated to make a diatomic molecule using a time dependent magnetic field to ramp the energy of a scattering resonance state from above to below the scattering threshold. A relatively simple model, parameterized in te
We observe magnetically tuned collision resonances for ultracold Cs2 molecules stored in a CO2-laser trap. By magnetically levitating the molecules against gravity, we precisely measure their magnetic moment. We find an avoided level crossing which a