ترغب بنشر مسار تعليمي؟ اضغط هنا

Exchange Bias Effect in Au-Fe3O4 Nanocomposites

168   0   0.0 ( 0 )
 نشر من قبل Oscar Iglesias
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report exchange bias (EB) effect in the Au-Fe3O4 composite nanoparticle system, where one or more Fe3O4 nanoparticles are attached to an Au seed particle forming dimer and cluster morphologies, with the clusters showing much stronger EB in comparison with the dimers. The EB effect develops due to the presence of stress in the Au-Fe3O4 interface which leads to the generation of highly disordered, anisotropic surface spins in the Fe3O4 particle. The EB effect is lost with the removal of the interfacial stress. Our atomistic Monte-Carlo studies are in excellent agreement with the experimental results. These results show a new path towards tuning EB in nanostructures, namely controllably creating interfacial stress, and open up the possibility of tuning the anisotropic properties of biocompatible nanoparticles via a controllable exchange coupling mechanism.



قيم البحث

اقرأ أيضاً

Morphology, structure and magnetic properties of nanocomposites of magnetite (Fe3O4) nanoparticles and alginic acid (AA) are studied. Magnetite Fe3O4 nanoparticles and the nanoparticles capped with alginic acid exhibit very distinct properties. The c hemical bonding between alginic acid and surface of magnetite nanoparticles results in recovery of surface magnetization. On the other hand, it also leads to enhanced surface spin disorder and unconventional behavior of magnetization observed in Fe3O4-AA nanocomposites at low temperatures.
Au/Co/Au nanopillars fabricated by colloidal lithography of continuous trilayers exhibit and enhanced coercive field and the appearance of an exchange bias field with respect to the continuous layers. This is attributed to the lateral oxidation of th e Co interlayer that appears upon disc fabrication. The dependence of the exchange bias field on the Co nanodots size and on the oxidation degree is analyzed and its microscopic origin clarified by means of Monte Carlo simulations based on a model of a cylindrical dot with lateral core/shell structure.
80 - X. H. Liu , W. Liu , Z. D. Zhang 2018
We report the tunability of the exchange bias effect by the first-order metal-insulator transition (known as the Verwey transition) of Fe3O4 in CoO (5 nm)/Fe3O4 (40 nm)/MgO (001) thin film. In the vicinity of the Verwey transition, the exchange bias field is substantially enhanced because of a sharp increase in magnetocrystalline anisotropy constant from high-temperature cubic to lowtemperature monoclinic structure. Moreover, with respect to the Fe3O4 (40 nm)/MgO (001) thin film, the coercivity field of the CoO (5 nm)/Fe3O4 (40 nm)/MgO (001) bilayer is greatly increased for all the temperature range, which would be due to the coupling between Co spins and Fe spins across the interface.
128 - S. Tardif , S. Cherifi , M. Jamet 2010
We report on the exchange biasing of self-assembled ferromagnetic GeMn nanocolumns by GeMn-oxide caps. The x-ray absorption spectroscopy analysis of this surface oxide shows a multiplet fine structure that is typical of the Mn2+ valence state in MnO. A magnetization hysteresis shift |HE|~100 Oe and a coercivity enhancement of about 70 Oe have been obtained upon cooling (300-5 K) in a magnetic field as low as 0.25 T. This exchange bias is attributed to the interface coupling between the ferromagnetic nanocolumns and the antiferromagnetic MnO-like caps. The effect enhancement is achieved by depositing a MnO layer on the GeMn nanocolumns.
Exchange bias (EB) and the training effects (TE) in an antiferromagnetically coupled La0.7Sr0.3MnO3 / SrRuO3 superlattices were studied in the temperature range 1.8 - 150 K. Strong antiferromagnetic (AFM) interlayer coupling is evidenced from AC - su sceptibility measurements. Below 100 K, vertical magnetization shifts are present due to the two remanent states corresponding to the two ferromagnetic (FM) layers at FM and AFM coupling condition. After field cooling (FC), significant decrease in the exchange bias field (HEB) is observed when cycling the system through several consecutive hysteresis loops. Quantitative analysis for the variation of HEB vs. number of field cycles (n) indicates an excellent agreement between the theory, based on triggered relaxation phenomena, and our experimental observations. Nevertheless, the crucial fitting parameter K indicates smooth training effect upon repeated field cycling, in accordance with our observation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا