ﻻ يوجد ملخص باللغة العربية
A functionally graded Al-doped ZnO structure is presented which combines conductivity, visible transparency and light scattering with mechanical flexibility. The nano and meso-architecture, constituted by a hierarchical, large surface area, mesoporous tree-like structure evolving in a compact layer, is synthesized at room temperature and is fully compatible with plastic substrates. Light trapping capability is demonstrated by showing up to 100% improvement of light absorption of a low bandgap polymer employed as the active layer.
The structure-property relation of nanostructured Al-doped ZnO thin films has been investigated in detail through a systematic variation of structure and morphology, with particular emphasis on how they affect optical and electrical properties. A var
ZnO-based scintillation ceramics for application in HENPA LENPA analyzers have been investigated. The following ceramic samples have been prepared: undoped ones (ZnO), an excess of zinc in stoichiometry (ZnO:Zn), doped with gallium (ZnO:Ga) and lithi
We have studied the electronic structure of Zn$_{0.9}$Fe$_{0.1}$O nano-particles, which have been reported to show ferromagnetism at room temperature, by x-ray photoemission spectroscopy (XPS), resonant photoemission spectroscopy (RPES), x-ray absorp
La-doped SrSnO3 (LSSO) is known as one of deep-ultraviolet (DUV)-transparent conducting oxides with an energy bandgap of ~4.6 eV. Since LSSO can be grown heteroepitaxially on more wide bandgap substrates such as MgO (Eg ~7.8 eV), LSSO is considered t
Low-temperature heat capacities (Cp) of nanostructured rock salt (rs-ZnO) and wurtzite (w-ZnO) polymorphs of zinc oxide were measured in the 2-315 K temperature range. No significant influence of nanostructuring on Cp of w-ZnO has been observed. The