ترغب بنشر مسار تعليمي؟ اضغط هنا

Deriving CME density from remote sensing data and comparison to in-situ measurements

84   0   0.0 ( 0 )
 نشر من قبل Manuela Temmer
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We determine the 3D geometry and deprojected mass of 29 well-observed coronal mass ejections (CMEs) and their interplanetary counterparts (ICMEs) using combined STEREO-SOHO white-light data. From the geometry parameters we calculate the volume of the CME for the magnetic ejecta (flux-rope type geometry) and sheath structure (shell-like geometry resembling the (I)CME frontal rim). Working under the assumption that the CME mass is roughly equally distributed within a specific volume, we expand the CME self-similarly and calculate the CME density for distances close to the Sun (15-30 Rs) and at 1AU. Specific trends are derived comparing calculated and in-situ measured proton densities at 1AU, though large uncertainties are revealed due to the unknown mass and geometry evolution: i) a moderate correlation for the magnetic structure having a mass that stays rather constant (~0.56-0.59), and ii) a weak correlation for the sheath density (~0.26) by assuming the sheath region is an extra mass - as expected for a mass pile-up process - that is in its amount comparable to the initial CME deprojected mass. High correlations are derived between in-situ measured sheath density and the solar wind density (~ -0.73) and solar wind speed (~0.56) as measured 24 hours ahead of the arrival of the disturbance. This gives additional confirmation that the sheath-plasma indeed stems from piled-up solar wind material. While the CME interplanetary propagation speed is not related to the sheath density, the size of the CME may play some role in how much material could be piled up.

قيم البحث

اقرأ أيضاً

We analyze the well observed flare-CME event from October 1, 2011 (SOL2011-10-01T09:18) covering the complete chain of action - from Sun to Earth - for a better understanding of the dynamic evolution of the CME and its embedded magnetic field. We stu dy the solar surface and atmosphere associated with the flare-CME from SDO and ground-based instruments, and also track the CME signature off-limb from combined EUV and white-light data with STEREO. By applying 3D reconstruction techniques (GCS, total mass) to stereoscopic STEREO-SoHO coronagraph data, we track the temporal and spatial evolution of the CME in interplanetary space and derive its geometry and 3D-mass. We combine the GCS and Lundquist model results to derive the axial flux and helicity of the MC from in-situ measurements (Wind). This is compared to nonlinear force-free (NLFF) model results as well as to the reconnected magnetic flux derived from the flare ribbons (flare reconnection flux) and the magnetic flux encompassed by the associated dimming (dimming flux). We find that magnetic reconnection processes were already ongoing before the start of the impulsive flare phase, adding magnetic flux to the flux rope before its final eruption. The dimming flux increases by more than 25% after the end of the flare, indicating that magnetic flux is still added to the flux rope after eruption. Hence, the derived flare reconnection flux is most probably a lower limit for estimating the magnetic flux within the flux rope. We find that the magnetic helicity and axial magnetic flux are reduced in interplanetary space by ~50% and 75%, respectively, possibly indicating to an erosion process. A mass increase of 10% for the CME is observed over the distance range from ~4-20 Rs. The temporal evolution of the CME associated core dimming regions supports the scenario that fast outflows might supply additional mass to the rear part of the CME.
Context. The Suns complex corona is the source of the solar wind and interplanetary magnetic field. While the large scale morphology is well understood, the impact of variations in coronal properties on the scale of a few degrees on properties of the interplanetary medium is not known. Solar Orbiter, carrying both remote sensing and in situ instruments into the inner solar system, is intended to make these connections better than ever before. Aims. We combine remote sensing and in situ measurements from Solar Orbiters first perihelion at 0.5 AU to study the fine scale structure of the solar wind from the equatorward edge of a polar coronal hole with the aim of identifying characteristics of the corona which can explain the in situ variations. Methods. We use in situ measurements of the magnetic field, density and solar wind speed to identify structures on scales of hours at the spacecraft. Using Potential Field Source Surface mapping we estimate the source locations of the measured solar wind as a function of time and use EUI images to characterise these solar sources. Results. We identify small scale stream interactions in the solar wind with compressed magnetic field and density along with speed variations which are associated with corrugations in the edge of the coronal hole on scales of several degrees, demonstrating that fine scale coronal structure can directly influence solar wind properties and drive variations within individual streams. Conclusions. This early analysis already demonstrates the power of Solar Orbiters combined remote sensing and in situ payload and shows that with future, closer perihelia it will be possible dramatically to improve our knowledge of the coronal sources of fine scale solar wind structure, which is important both for understanding the phenomena driving the solar wind and predicting its impacts at the Earth and elsewhere.
The remoteness of the Sun and the harsh conditions prevailing in the solar corona have so far limited the observational data used in the study of solar physics to remote-sensing observations taken either from the ground or from space. In contrast, th e `solar wind laboratory is directly measured in situ by a fleet of spacecraft measuring the properties of the plasma and magnetic fields at specific points in space. Since 2007, the solar-terrestrial relations observatory (STEREO) has been providing images of the solar wind that flows between the solar corona and spacecraft making in-situ measurements. This has allowed scientists to directly connect processes imaged near the Sun with the subsequent effects measured in the solar wind. This new capability prompted the development of a series of tools and techniques to track heliospheric structures through space. This article presents one of these tools, a web-based interface called the Propagation Tool that offers an integrated research environment to study the evolution of coronal and solar wind structures, such as Coronal Mass Ejections (CMEs), Corotating Interaction Regions (CIRs) and Solar Energetic Particles (SEPs). These structures can be propagated from the Sun outwards to or alternatively inwards from planets and spacecraft situated in the inner and outer heliosphere. In this paper, we present the global architecture of the tool, discuss some of the assumptions made to simulate the evolution of the structures and show how the tool connects to different databases.
In the present work, we analyze a filament eruption associated with an ICME that arrived at L1 on August 5th, 2011. In multi-wavelength SDO/AIA images, three plasma parcels within the filament were tracked at high-cadence along the solar corona. A no vel absorption diagnostic technique was applied to the filament material travelling along the three chosen trajectories to compute the column density and temperature evolution in time. Kinematics of the filamentary material were estimated using STEREO/EUVI and STEREO/COR1 observations. The Michigan Ionization Code used inputs of these density, temperature, and speed profiles for the computation of ionization profiles of the filament plasma. Based on these measurements we conclude the core plasma was in near ionization equilibrium, and the ionization states were not frozen-in at the altitudes where they were visible in absorption in AIA images. Additionally, we report that the filament plasma was heterogeneous, and the filamentary material was continuously heated as it expanded in the low solar corona.
A key aim in space weather research is to be able to use remote-sensing observations of the solar atmosphere to extend the lead time of predicting the geoeffectiveness of a coronal mass ejection (CME). In order to achieve this, the magnetic structure of the CME as it leaves the Sun must be known. In this article we address this issue by developing a method to determine the intrinsic flux rope type of a CME solely from solar disk observations. We use several well known proxies for the magnetic helicity sign, the axis orientation, and the axial magnetic field direction to predict the magnetic structure of the interplanetary flux rope. We present two case studies: the 2 June 2011 and the 14 June 2012 CMEs. Both of these events erupted from an active region and, despite having clear in situ counterparts, their eruption characteristics were relatively complex. The first event was associated with an active region filament that erupted in two stages, while for the other event the eruption originated from a relatively high coronal altitude and the source region did not feature the presence of a filament. Our magnetic helicity sign proxies include the analysis of magnetic tongues, soft X-ray and/or EUV sigmoids, coronal arcade skew, filament emission and absorption threads, and filament rotation. Since the inclination of the post-eruption arcades was not clear, we use the tilt of the polarity inversion line to determine the flux rope axis orientation, and coronal dimmings to determine the flux rope footpoints and, therefore, the direction of the axial magnetic field. The comparison of the estimated intrinsic flux rope structure to in situ observations at the Lagrangian point L1 indicated a good agreement with the predictions. Our results highlight the flux rope type determination techniques that are particularly useful for active region eruptions, where most geoeffective CMEs originate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا