ترغب بنشر مسار تعليمي؟ اضغط هنا

The First Pulse of the Extremely Bright GRB 130427A: A Test Lab for Synchrotron Shocks

75   0   0.0 ( 0 )
 نشر من قبل Rob Preece
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gamma-ray burst (GRB) 130427A is one of the most energetic GRBs ever observed. The initial pulse up to 2.5 s is possibly the brightest well-isolated pulse observed to date. A fine time resolution spectral analysis shows power-law decays of the peak energy from the onset of the pulse, consistent with models of internal synchrotron shock pulses. However, a strongly correlated power-law behavior is observed between the luminosity and the spectral peak energy that is inconsistent with curvature effects arising in the relativistic outflow. It is difficult for any of the existing models to account for all of the observed spectral and temporal behaviors simultaneously.


قيم البحث

اقرأ أيضاً

The optical light that is generated simultaneously with the x-rays and gamma-rays during a gamma-ray burst (GRB) provides clues about the nature of the explosions that occur as massive stars collapse to form black holes. We report on the bright optic al flash and fading afterglow from the powerful burst GRB 130427A and present a comparison with the properties of the gamma-ray emission that show correlation of the optical and >100 MeV photon flux light curves during the first 7,000 seconds. We attribute this correlation to co-generation in an external shock. The simultaneous, multi-color, optical observations are best explained at early times by reverse shock emission generated in the relativistic burst ejecta as it collides with surrounding material and at late times by a forward shock traversing the circumburst environment. The link between optical afterglow and >100 MeV emission suggests that nearby early peaked afterglows will be the best candidates for studying GRB emission at GeV/TeV energies.
The first limits on the prompt emission from the long gamma-ray burst (GRB) 130427A in the $>100 obreakspacerm{GeV}$ energy band are reported. GRB 130427A was the most powerful burst ever detected with a redshift $zlesssim0.5$ and featured the longes t lasting emission above $100 obreakspacerm{MeV}$. The energy spectrum extends at least up to $95 obreakspacerm{GeV}$, clearly in the range observable by the High Altitude Water Cherenkov (HAWC) Gamma-ray Observatory, a new extensive air shower detector currently under construction in central Mexico. The burst occurred under unfavourable observation conditions, low in the sky and when HAWC was running 10% of the final detector. Based on the observed light curve at MeV-GeV energies, eight different time periods have been searched for prompt and delayed emission from this GRB. In all cases, no statistically significant excess of counts has been found and upper limits have been placed. It is shown that a similar GRB close to zenith would be easily detected by the full HAWC detector, which will be completed soon. The detection rate of the full HAWC detector may be as high as one to two GRBs per year. A detection could provide important information regarding the high energy processes at work and the observation of a possible cut-off beyond the $mathit{Fermi}$-LAT energy range could be the signature of gamma-ray absorption, either in the GRB or along the line of sight due to the extragalactic background light.
110 - G. E. Anderson 2014
We present one of the best sampled early time light curves of a gamma-ray burst (GRB) at radio wavelengths. Using the Arcminute Mircrokelvin Imager (AMI) we observed GRB 130427A at the central frequency of 15.7 GHz between 0.36 and 59.32 days post-bu rst. These results yield one of the earliest radio detections of a GRB and demonstrate a clear rise in flux less than one day after the gamma-ray trigger followed by a rapid decline. This early time radio emission probably originates in the GRB reverse shock so our AMI light curve reveals the first ever confirmed detection of a reverse shock peak in the radio domain. At later times (about 3.2 days post-burst) the rate of decline decreases, indicating that the forward shock component has begun to dominate the light-curve. Comparisons of the AMI light curve with modelling conducted by Perley et al. show that the most likely explanation of the early time 15.7 GHz peak is caused by the self-absorption turn-over frequency, rather than the peak frequency, of the reverse shock moving through the observing bands.
We present the analysis of the extraordinarily bright Gamma-Ray Burst (GRB) 130427A under the hypothesis that the GRB central engine is an accretion-powered magnetar. In this framework, initially proposed to explain GRBs with precursor activity, the prompt emission is produced by accretion of matter onto a newly-born magnetar, and the observed power is related to the accretion rate. The emission is eventually halted if the centrifugal forces are able to pause accretion. We show that the X-ray and optical afterglow is well explained as the forward shock emission with a jet break plus a contribution from the spin-down of the magnetar. Our modelling does not require any contribution from the reverse shock, that may still influence the afterglow light curve at radio and mm frequencies, or in the optical at early times. We derive the magnetic field ($Bsim 10^{16}$ G) and the spin period ($Psim 20$ ms) of the magnetar and obtain an independent estimate of the minimum luminosity for accretion. This minimum luminosity results well below the prompt emission luminosity of GRB 130427A, providing a strong consistency check for the scenario where the entire prompt emission is the result of continuous accretion onto the magnetar. This is in agreement with the relatively long spin period of the magnetar. GRB 130427A was a well monitored GRB showing a very standard behavior and, thus, is a well-suited benchmark to show that an accretion-powered magnetar gives a unique view of the properties of long GRBs.
We present extensive radio and millimeter observations of the unusually bright GRB 130427A at z=0.340, spanning 0.67 to 12 days after the burst. Taken in conjunction with detailed multi-band UV, optical, NIR, and X-ray observations we find that the b road-band afterglow emission is composed of distinct reverse shock and forward shock contributions. The reverse shock emission dominates in the radio/millimeter and at <0.1 days in the UV/optical/NIR, while the forward shock emission dominates in the X-rays and at >0.1 days in the UV/optical/NIR. We further find that the optical and X-ray data require a Wind circumburst environment, pointing to a massive star progenitor. Using the combined forward and reverse shock emission we find that the parameters of the burst are an isotropic kinetic energy of E_Kiso~2e53 erg, a mass loss rate of Mdot~3e-8 Msun/yr (for a wind velocity of 1,000 km/s), and a Lorentz factor at the deceleration time of Gamma(200s)~130. Due to the low density and large isotropic energy, the absence of a jet break to ~15 days places only a weak constraint on the opening angle of theta_j>2.5 deg, and therefore a total energy of E_gamma+E_K>1.2e51 erg, similar to other GRBs. The reverse shock emission is detectable in this burst due to the low circumburst density, which leads to a slow cooling shock. We speculate that this is a required property for the detectability of reverse shocks in the radio and millimeter bands. Following on GRB 130427A as a benchmark event, observations of future GRBs with the exquisite sensitivity of VLA and ALMA, coupled with detailed modeling of the reverse and forward shock contributions will test this hypothesis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا