ترغب بنشر مسار تعليمي؟ اضغط هنا

A magnetar powering the ordinary monster GRB 130427A?

264   0   0.0 ( 0 )
 نشر من قبل Maria Grazia Bernardini
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the analysis of the extraordinarily bright Gamma-Ray Burst (GRB) 130427A under the hypothesis that the GRB central engine is an accretion-powered magnetar. In this framework, initially proposed to explain GRBs with precursor activity, the prompt emission is produced by accretion of matter onto a newly-born magnetar, and the observed power is related to the accretion rate. The emission is eventually halted if the centrifugal forces are able to pause accretion. We show that the X-ray and optical afterglow is well explained as the forward shock emission with a jet break plus a contribution from the spin-down of the magnetar. Our modelling does not require any contribution from the reverse shock, that may still influence the afterglow light curve at radio and mm frequencies, or in the optical at early times. We derive the magnetic field ($Bsim 10^{16}$ G) and the spin period ($Psim 20$ ms) of the magnetar and obtain an independent estimate of the minimum luminosity for accretion. This minimum luminosity results well below the prompt emission luminosity of GRB 130427A, providing a strong consistency check for the scenario where the entire prompt emission is the result of continuous accretion onto the magnetar. This is in agreement with the relatively long spin period of the magnetar. GRB 130427A was a well monitored GRB showing a very standard behavior and, thus, is a well-suited benchmark to show that an accretion-powered magnetar gives a unique view of the properties of long GRBs.



قيم البحث

اقرأ أيضاً

147 - A. Maselli , A. Melandri , L. Nava 2013
Long-duration Gamma-Ray Bursts (GRBs) are an extremely rare outcome of the collapse of massive stars, and are typically found in the distant Universe. Because of its intrinsic luminosity ($Lsim 3 times 10^{53}$ erg s$^{-1}$) and its relative proximit y ($z=0.34$), GRB 130427A was a unique event that reached the highest fluence observed in the gamma-ray band. Here we present a comprehensive multiwavelength view of GRB 130427A with Swift, the 2-m Liverpool and Faulkes telescopes and by other ground-based facilities, highlighting the evolution of the burst emission from the prompt to the afterglow phase. The properties of GRB 130427A are similar to those of the most luminous, high-redshift GRBs, suggesting that a common central engine is responsible for producing GRBs in both the contemporary and the early Universe and over the full range of GRB isotropic energies.
We present extensive radio and millimeter observations of the unusually bright GRB 130427A at z=0.340, spanning 0.67 to 12 days after the burst. Taken in conjunction with detailed multi-band UV, optical, NIR, and X-ray observations we find that the b road-band afterglow emission is composed of distinct reverse shock and forward shock contributions. The reverse shock emission dominates in the radio/millimeter and at <0.1 days in the UV/optical/NIR, while the forward shock emission dominates in the X-rays and at >0.1 days in the UV/optical/NIR. We further find that the optical and X-ray data require a Wind circumburst environment, pointing to a massive star progenitor. Using the combined forward and reverse shock emission we find that the parameters of the burst are an isotropic kinetic energy of E_Kiso~2e53 erg, a mass loss rate of Mdot~3e-8 Msun/yr (for a wind velocity of 1,000 km/s), and a Lorentz factor at the deceleration time of Gamma(200s)~130. Due to the low density and large isotropic energy, the absence of a jet break to ~15 days places only a weak constraint on the opening angle of theta_j>2.5 deg, and therefore a total energy of E_gamma+E_K>1.2e51 erg, similar to other GRBs. The reverse shock emission is detectable in this burst due to the low circumburst density, which leads to a slow cooling shock. We speculate that this is a required property for the detectability of reverse shocks in the radio and millimeter bands. Following on GRB 130427A as a benchmark event, observations of future GRBs with the exquisite sensitivity of VLA and ALMA, coupled with detailed modeling of the reverse and forward shock contributions will test this hypothesis.
We show that the light curve of the double GeV+optical flash in GRB 130427A is consistent with radiation from the blast wave in a wind-type medium with density parameter $A=rho r^2sim 5times 10^{10}$ g cm$^{-1}$. The peak of the flash is emitted by c opious $e^pm$ pairs created and heated in the blast wave; our first-principle calculation determines the pair-loading factor and temperature of the shocked plasma. Using detailed radiative transfer simulations we reconstruct the observed double flash. The optical flash is dominated by synchrotron emission from the thermal plasma behind the forward shock, and the GeV flash is produced via inverse Compton (IC) scattering by the same plasma. The seed photons for IC scattering are dominated by the prompt MeV radiation during the first tens of seconds, and by the optical to X-ray afterglow thereafter. IC cooling of the thermal plasma behind the forward shock reproduces all GeV data from a few seconds to $sim 1$ day. We find that the blast wave Lorentz factor at the peak of the flash is $Gammaapprox 200$, and the forward shock magnetization is $epsilon_Bsim 2times 10^{-4}$. An additional source is required by the data in the optical and X-ray bands at times $>10^2$ s; we speculate that this additional source may be a long-lived reverse shock in the explosion ejecta.
The complex multiwavelength emission of GRB afterglow 130427A (monitored in the radio up to 10 days, in the optical and X-ray until 50 days, and at GeV energies until 1 day) can be accounted for by a hybrid reverse-forward shock synchrotron model, wi th inverse-Compton emerging only above a few GeV. The high ratio of the early optical to late radio flux requires that the ambient medium is a wind and that the forward-shock synchrotron spectrum peaks in the optical at about 10 ks. The latter has two consequences: the wind must be very tenuous and the optical emission before 10 ks must arise from the reverse-shock, as suggested also by the bright optical flash that Raptor has monitored during the prompt emission phase (<100 s). The VLA radio emission is from the reverse-shock, the Swift X-ray emission is mostly from the forward-shock, but the both shocks give comparable contributions to the Fermi GeV emission. The weak wind implies a large blast-wave radius (8 t_{day}^{1/2} pc), which requires a very tenuous circumstellar medium, suggesting that the massive stellar progenitor of GRB 130427A resided in a super-bubble.
473 - E. Aliu , T. Aune , A. Barnacka 2014
Prompt emission from the very fluent and nearby (z=0.34) gamma-ray burst GRB 130427A was detected by several orbiting telescopes and by ground-based, wide-field-of-view optical transient monitors. Apart from the intensity and proximity of this GRB, i t is exceptional due to the extremely long-lived high-energy (100 MeV to 100 GeV) gamma-ray emission, which was detected by the Large Area Telescope on the Fermi Gamma-ray Space Telescope for ~70 ks after the initial burst. The persistent, hard-spectrum, high-energy emission suggests that the highest-energy gamma rays may have been produced via synchrotron self-Compton processes though there is also evidence that the high-energy emission may instead be an extension of the synchrotron spectrum. VERITAS, a ground-based imaging atmospheric Cherenkov telescope array, began follow-up observations of GRB 130427A ~71 ks (~20 hr) after the onset of the burst. The GRB was not detected with VERITAS; however, the high elevation of the observations, coupled with the low redshift of the GRB, make VERITAS a very sensitive probe of the emission from GRB 130427A for E > 100 GeV. The non-detection and consequent upper limit derived place constraints on the synchrotron self-Compton model of high-energy gamma-ray emission from this burst.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا