ﻻ يوجد ملخص باللغة العربية
Major solar eruptive events (SEEs), consisting of both a large flare and a near simultaneous large fast coronal mass ejection (CME), are the most powerful explosions and also the most powerful and energetic particle accelerators in the solar system, producing solar energetic particles (SEPs) up to tens of GeV for ions and hundreds of MeV for electrons. The intense fluxes of escaping SEPs are a major hazard for humans in space and for spacecraft. Furthermore, the solar plasma ejected at high speed in the fast CME completely restructures the interplanetary medium (IPM) - major SEEs therefore produce the most extreme space weather in geospace, the interplanetary medium, and at other planets. Thus, understanding the flare/CME energy release process(es) and the related particle acceleration processes are major goals in Heliophysics. To make the next major breakthroughs, we propose a new mission concept, SEE 2020, a single spacecraft with a complement of advanced new instruments that focus directly on the coronal energy release and particle acceleration sites, and provide the detailed diagnostics of the magnetic fields, plasmas, mass motions, and energetic particles required to understand the fundamental physical processes involved.
The concept of the Solar Ring mission was gradually formed from L5/L4 mission concept, and the proposal of its pre-phase study was funded by the National Natural Science Foundation of China in November 2018 and then by the Strategic Priority Program
We have evaluated the energetics of 38 solar eruptive events observed by a variety of spacecraft instruments between February 2002 and December 2006, as accurately as the observations allow. The measured energetic components include: (1) the radiated
Impulsive solar energetic particle events are widely believed to be due to the prompt escape into the interplanetary medium of flare-accelerated particles produced by solar eruptive events. According to the standard model for such events, however, pa
The underlying origin of solar eruptive events (SEEs), ranging from giant coronal mass ejections to small coronal-hole jets, is that the lowest-lying magnetic flux in the Suns corona undergoes the continual buildup of stress and free energy. This mag
Despite the significant progress achieved in recent years, the physical mechanisms underlying the origin of solar energetic particles (SEPs) are still a matter of debate. The complex nature of both particle acceleration and transport poses challenges