ترغب بنشر مسار تعليمي؟ اضغط هنا

Solar energetic particle events observed by the PAMELA mission

168   0   0.0 ( 0 )
 نشر من قبل Alessandro Bruno
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite the significant progress achieved in recent years, the physical mechanisms underlying the origin of solar energetic particles (SEPs) are still a matter of debate. The complex nature of both particle acceleration and transport poses challenges to developing a universal picture of SEP events that encompasses both the low-energy (from tens of keV to a few hundreds of MeV) observations made by space-based instruments and the GeV particles detected by the worldwide network of neutron monitors in ground-level enhancements (GLEs). The high-precision data collected by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) satellite experiment offer a unique opportunity to study the SEP fluxes between $sim$80 MeV and a few GeV, significantly improving the characterization of the most energetic events. In particular, PAMELA can measure for the first time with good accuracy the spectral features at moderate and high energies, providing important constraints for current SEP models. In addition, the PAMELA observations allow the relationship between low and high-energy particles to be investigated, enabling a clearer view of the SEP origin. No qualitative distinction between the spectral shapes of GLE, sub-GLE and non-GLE events is observed, suggesting that GLEs are not a separate class, but are the subset of a continuous distribution of SEP events that are more intense at high energies. While the spectral forms found are to be consistent with diffusive shock acceleration theory, which predicts spectral rollovers at high energies that are attributed to particles escaping the shock region during acceleration, further work is required to explore the relative influences of acceleration and transport processes on SEP spectra.



قيم البحث

اقرأ أيضاً

The PAMELA satellite experiment is providing first direct measurements of Solar Energetic Particles (SEPs) with energies from about 80 MeV to several GeV in near-Earth space, bridging the low energy data by other space-based instruments and the Groun d Level Enhancement (GLE) data by the worldwide network of neutron monitors. Its unique observational capabilities include the possibility of measuring the flux angular distribution and thus investigating possible anisotropies. This work reports the analysis methods developed to estimate the SEP energy spectra as a function of the particle pitch-angle with respect to the Interplanetary Magnetic Field (IMF) direction. The crucial ingredient is provided by an accurate simulation of the asymptotic exposition of the PAMELA apparatus, based on a realistic reconstruction of particle trajectories in the Earths magnetosphere. As case study, the results for the May 17, 2012 event are presented.
154 - R. Bucik , D. E. Innes , U. Mall 2013
Using the SIT instrument aboard STEREO we have examined the abundance of the 3He during the ascending phase of solar cycle 24 from January 2010 through December 2012. We report on several cases when 3He-rich solar energetic particle events were succe ssively observed on ACE and STEREO-A with delays consistent with the Carrington rotation rate. In the investigated period ACE and STEREO-A were significantly separated in the heliolongitude corresponding to solar rotation times of 5 to 10 days. We inspect STEREO-A EUV images and use the potential-field source-surface extrapolations together with in-situ magnetic field data to identify responsible solar sources. We find the 3He/4He ratio highly variable in these events and correlated between the spacecraft for the cases with the same connection region on the Sun.
150 - E.P. Kontar , H. A. S. Reid 2009
Impulsive solar energetic electrons are often observed in the interplanetary space near the Earth and have an attractive diagnostic potential for poorly understood solar flare acceleration processes. We investigate the transport of solar flare energe tic electrons in the heliospheric plasma to understand the role of transport to the observed onset and spectral properties of the impulsive solar electron events. The propagation of energetic electrons in solar wind plasma is simulated from the acceleration region at the Sun to the Earth, taking into account self-consistent generation and absorption of electrostatic electron plasma (Langmuir) waves, effects of non-uniform plasma, collisions and Landau damping. The simulations suggest that the beam-driven plasma turbulence and the effects of solar wind density inhomogeneity play a crucial role and lead to the appearance of a) spectral break for a single power-law injected electron spectrum, with the spectrum flatter below the break, b) apparent early onset of low-energy electron injection, c) the apparent late maximum of low-energy electron injection. We show that the observed onsets, spectral flattening at low energies, and formation of a break energy at tens of keV is the direct manifestation of wave-particle interactions in non-uniform plasma of a single accelerated electron population with an initial power-law spectrum.
152 - R. Bucik , D. E. Innes , L. Guo 2015
Small 3He-rich solar energetic particle (SEP) events with their anomalous abundances, markedly different from solar system, provide evidence for a unique acceleration mechanism that operates routinely near solar active regions. Although the events ar e sometimes accompanied by coronal mass ejections (CMEs) it is believed that mass and isotopic fractionation is produced directly in the flare sites on the Sun. We report on a large-scale extreme ultraviolet (EUV) coronal wave observed in association with 3He-rich SEP events. In the two examples discussed, the observed waves were triggered by minor flares and appeared concurrently with EUV jets and type III radio bursts but without CMEs. The energy spectra from one event are consistent with so-called class-1 (characterized by power laws) while the other with class-2 (characterized by rounded 3He and Fe spectra) 3He-rich SEP events, suggesting different acceleration mechanisms in the two. The observation of EUV waves suggests that large-scale disturbances, in addition to more commonly associated jets, may be responsible for the production of 3He-rich SEP events.
The scenario of twin coronal mass ejections (CMEs), i.e., a fast and wide primary CME (priCME) preceded by previous CMEs (preCMEs), has been found to be favorable to a more efficient particle acceleration in large solar energetic particle (SEP) event s. Here, we study 19 events during 2007--2014 associated with twin-CME eruptions but without large SEP observations at L1 point. We combine remote-sensing and in situ observations from multiple spacecraft to investigate the role of magnetic connectivity in SEP detection and the CME information in 3-dimensional (3D) space. We study one-on-one correlations of the priCME 3D speed, flare intensity, suprathermal backgrounds, and height of CME-CME interaction with the SEP intensity. Among these, the priCME speed is found to correlate with the SEP peak intensity at the highest level. We use the projection correlation method to analyze the correlations between combinations of these multiple independent factors and the SEP peak intensity. We find that the only combination of two or more parameters that has higher correlation with the SEP peak intensity than the CME speed is the CME speed combined with the propagation direction. This further supports the dominant role of the priCME in controlling the SEP enhancements, and emphasizes the consideration of the latitudinal effect. Overall, the magnetic connectivity in longitude as well as latitude and the relatively lower priCME speed may explain the existence of the twin-CME SEP-poor events. The role of the barrier effect of preCME(s) is discussed for an event on 2013 October 28.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا