ﻻ يوجد ملخص باللغة العربية
We investigate a mixture of ultracold fermionic $^{40}$K atoms and weakly bound $^{6}$Li$^{40}$K dimers on the repulsive side of a heteronuclear atomic Feshbach resonance. By radio-frequency spectroscopy we demonstrate that the normally repulsive atom-dimer interaction is turned into a strong attraction. The phenomenon can be understood as a three-body effect in which two heavy $^{40}$K fermions exchange the light $^{6}$Li atom, leading to attraction in odd partial-wave channels (mainly p-wave). Our observations show that mass imbalance in a fermionic system can profoundly change the character of interactions as compared to the well-established mass-balanced case.
Ultracold gases of three distinguishable particles with large scattering lengths are expected to show rich few-body physics related to the Efimov effect. We have created three different mixtures of ultracold 6Li atoms and weakly bound 6Li2 dimers con
We report on the expansion of a Fermi-Fermi mixture of Li-6 and K-40 atoms under conditions of strong interactions realized near the center of an interspecies Feshbach resonance. We observe two different phenomena of hydrodynamic behavior. The first
The superfluid mixture of interacting Bose and Fermi species is a remarkable many-body quantum system. Dilute degenerate atomic gases, especially for two species of distinct masses, are excellent candidates for exploring fundamental features of super
We model the one-dimension (1D) to three-dimension (3D) crossover in a cylindrically trapped Fermi gas with attractive interactions and spin-imbalance. We calculate the mean-field phase diagram, and study the relative stability of exotic superfluid p
We investigate magnetoassociation of ultracold fermionic Feshbach molecules in a mixture of $^{40}$K and $^{87}$Rb atoms, where we can create as many as $7times 10^4$ $^{40}$K$^{87}$Rb molecules with a conversion efficiency as high as 45%. In the per