ترغب بنشر مسار تعليمي؟ اضغط هنا

Negative photoconductance in a biased multiquantum well with filter barriers

91   0   0.0 ( 0 )
 نشر من قبل Anibal T Bezerra
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper the photon-assisted electron motion in a multiquantum well (MQW) semiconductor heterostructure in the presence of an electric field is investigated. The time-dependent Schrodinger equation is solved by using the split-operator technique to determine the photocurrent generated by the electron movement through the biased MQW system. An analysis of the energy shifts in the photocurrent spectra reveals interesting features coming from the contributions of localized and extended states on the MQW system. The photocurrent signal is found to increase for certain values of electric field, leading to the analogue of the negative-conductance in resonant tunneling diodes. The origin of this enhancement is traced to the mixing of localized states in the QWs with those in the continuum. This mixing appears as anticrossings between the localized and extended states and the enhanced photocurrent can be related to the dynamically induced Landau-Zener-Stuckelberg-Majorana transition between two levels at the anticrossing.

قيم البحث

اقرأ أيضاً

45 - Yu Wang , Erfu Liu , Anyuan Gao 2018
Van der Waals (vdW) heterostructures made of two-dimensional materials have been demonstrated to be versatile architectures for optoelectronic applications due to strong light-matter interactions. However, most of light-controlled phenomena and appli cations in the vdW heterostructures rely on positive photoconductance (PPC). Negative photoconductance (NPC) has not yet been reported in vdW heterostructures. Here we report the observation of the NPC in ReS2/h-BN/MoS2 vdW heterostructures-based floating gate phototransistor. The fabricated devices exhibit excellent performance of nonvolatile memory without light illumination. More interestingly, we observe a gate-tunable transition between the PPC and the NPC under the light illumination. The observed NPC phenomenon can be attributed to the charge transfer between floating gate and conduction channel. Furthermore, we show that the control of NPC through light intensity is promising in realization of light-tunable multi-bit memory devices. Our results may enable potential applications in multifunctional memories and optoelectronic devices.
We have studied the electrical conductivity of the electron gas in parallel electric and magnetic fields directed along the plane of a parabolic quantum well (across the profile of the potential). We found a general expression for the electrical cond uctivity applicable for any magnitudes of the magnetic field and the degree of degeneration of the electron gas. A new mechanism of generation of the negative magnetoresistance has been revealed. It has been shown that in a parabolic quantum well with a non-degenerated electron gas the negative magnetoresistance results from spin splitting of the levels of the size quantization.
A counter-intuitive disappearance of the giant terahertz photoconductance of a quantum point contact (QPC) under increase in the photon energy, which was discovered experimentally (Otteneder et al., Phys. Rev. Applied 10 (2018) 014015) and studied by the numerical calculations of the photon-stimulated transport (O.A. Tkachenko et al., JETP Lett. 108 (2018) 396), is explained here by using qualitative considerations about the momentum conservation upon absorption of terahertz photons. The spectra of photon-stimulated transmission through a smooth one-dimensional barrier are calculated on the basis of the perturbation theory. These calculations also predict the spectral maxima for optical transitions from the Fermi level to the top of the potential barrier. Within the proposed physical picture, the widths of the spectral maxima are estimated, and the evolution of the shape of the spectra with a change in the position of the Fermi level is qualitatively explained.
Three-dimensional topological insulators are a class of Dirac materials, wherein strong spin-orbit coupling leads to two-dimensional surface states. The latter feature spin-momentum locking, i.e., each momentum vector is associated with a spin locked perpendicularly to it in the surface plane. While the principal spin generation capability of topological insulators is well established, comparatively little is known about the interaction of the spins with external stimuli like polarized light. We observe a helical, bias-dependent photoconductance at the lateral edges of topological Bi2Te2Se platelets for perpendicular incidence of light. The same edges exhibit also a finite bias-dependent Kerr angle, indicative of spin accumulation induced by a transversal spin Hall effect in the bulk states of the Bi2Te2Se platelets. A symmetry analysis shows that the helical photoconductance is distinct to common longitudinal photoconductance and photocurrent phenomena, but consistent with the accumulated spins being transported in the side facets of the platelets. Our findings demonstrate that spin effects in the facets of 3D topological insulators can be addressed and read-out in optoelectronic devices even at room temperatures.
We report on the observation of the giant photoconductance of a quantum point contact (QPC) in tunneling regime excited by terahertz radiation. Studied QPCs are formed in a GaAs/AlGaAs heterostructure with a high-electron-mobility two-dimensional ele ctron gas. We demonstrate that irradiation of strongly negatively biased QPCs by laser radiation with frequency f = 0.69 THz and intensity 50 mW/cm^2 results in two orders of magnitude enhancement of the QPC conductance. The effect has a superlinear intensity dependence and increases with the dark conductivity decrease. It is also characterized by strong polarization and frequency dependencies. We demonstrate that all experimental findings can be well explained by the photon-mediated tunneling through the QPC. Corresponding calculations are in a good agreement with the experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا