ﻻ يوجد ملخص باللغة العربية
We have imaged the bipolar planetary nebula M2-9 using SOFIAs FORCAST instrument in six wavelength bands between 6.6 and 37.1 $mu m$. A bright central point source, unresolved with SOFIAs $sim$ 4${}$-to-5${}$ beam, is seen at each wavelength, and the extended bipolar lobes are clearly seen at 19.7 $mu m$ and beyond. The photometry between 10 and 25 $mu m$ is well fit by the emission predicted from a stratified disk seen at large inclination, as has been proposed for this source by Lykou et al and by Smith and Gehrz. The principal new results in this paper relate to the distribution and properties of the dust that emits the infrared radiation. In particular, a considerable fraction of this material is spread uniformly through the lobes, although the dust density does increase at the sharp outer edge seen in higher resolution optical images of M2-9. The dust grain population in the lobes shows that small ($<$ 0.1 $mu m$) and large ($>$ 1 $mu m$) particles appear to be present in roughly equal amounts by mass. We suggest that collisional processing within the bipolar outflow plays an important role in establishing the particle size distribution.
We present the first spatially resolved mid-infrared (37.1 $mu$m) image of the Fomalhaut debris disk. We use PSF fitting and subtraction to distinctly measure the flux from the unresolved component and the debris disk. We measure an infrared excess i
The massive star forming region W3 was observed with the faint object infrared camera for the SOFIA telescope (FORCAST) as part of the Short Science program. The 6.4, 6.6, 7.7, 19.7, 24.2, 31.5 and 37.1 um bandpasses were used to observe the emission
Planetary nebulae expand on time scales of 10^3-10^4 yr. For nearby objects, their expansion can be detected within years to decades. The pattern of expansion probes the internal velocity field and provides clues to the nebula ejection mechanism. In
Spatially resolved observations of the planetary nebula M2-42 (PN G008.2-04.8) obtained with the Wide Field Spectrograph on the Australian National University 2.3 m telescope have revealed the remarkable features of bipolar collimated jets emerging f
We present high quality radio continuum observations made with the Very Large Array (VLA) at 3.6 cm at two epochs toward the planetary nebula M2-43. The comparison of the two epochs, obtained with a time separation of 4.07 years, clearly shows the ex