ﻻ يوجد ملخص باللغة العربية
The goal of this paper is to calculate bound, resonant and scattering states in the coupled-channel formalism without relying on the boundary conditions at large distances. The coupled-channel solution is expanded in eigenchannel bases i.e. in eigenfunctions of diagonal Hamiltonians. Each eigenchannel basis may include discrete and discretized continuum (real or complex energy) single particle states. The coupled-channel solutions are computed through diagonalization in these bases. The method is applied to a few two-channels problems. The exact bound spectrum of the Poeschl-Teller potential is well described by using a basis of real energy continuum states. For deuteron described by Reid potential, the experimental energy and the S and D contents of the wave function are reproduced in the asymptotic limit of the cutoff energy. For the Noro-Taylor potential resonant state energy is well reproduced by using the complex energy Berggren basis. It is found that the expansion of the coupled-channel wave function in these eigenchannel bases require less computational efforts than the use of any other basis. The solutions are stable and converge as the cutoff energy increases.
In coupled-channel models the poles of the scattering S-matrix are located on different Riemann sheets. Physical observables are affected mainly by poles closest to the physical region but sometimes shadow poles have considerable effect, too. The pur
The Continuum Discretized Coupled Channels (CDCC) method is a well established theory for direct nuclear reactions which includes breakup to all orders. Alternatively, the 3-body problem can be solved exactly within the Faddeev formalism which explic
A transformation of supersymmetric quantum mechanics for N coupled channels is presented, which allows the introduction of up to N degenerate bound states without altering the remaining spectrum of the Hamiltonian. Phase equivalence of the Hamiltonia
We present a coupled-channel Lagrangian approach (GiM) to describe the $pi N to pi N$, $2pi N$ scattering in the resonance energy region. The $2pi N$ production has been significantly improved by using the isobar approximation with $sigma N$ and $pi
This is a review on recent developments of the continuum discretized coupled-channels method (CDCC) and its applications to nuclear physics, cosmology and astrophysics, and nuclear engineering. The theoretical foundation of CDCC is shown, and a micro