ترغب بنشر مسار تعليمي؟ اضغط هنا

$2pi$ production in the Giessen coupled-channel model

81   0   0.0 ( 0 )
 نشر من قبل Vitaly Shklyar
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a coupled-channel Lagrangian approach (GiM) to describe the $pi N to pi N$, $2pi N$ scattering in the resonance energy region. The $2pi N$ production has been significantly improved by using the isobar approximation with $sigma N$ and $pi Delta(1232)$ in the intermediate state. The three-body unitarity is maintained up to interference pattern between the isobar subchannels. The scattering amplitudes are obtained as a solution of the Bethe-Salpeter equation in the $K$ matrix approximation. As a first application we perform a partial wave analysis of the $pi N to pi N$, $pi^0pi^0 N$ reactions in the Roper resonance region. We obtain $R_{sigma N}(1440)=27^{+4}_{-9}$,% and $R_{sigma N}(1440)=12^{+5}_{-3}$,% for the $sigma N$ and $pi Delta$ decay branching ratios of $N^*(1440)$ respectively. The extracted $pi N$ inelasticities and reaction amplitudes are consistent with the results from other groups.

قيم البحث

اقرأ أيضاً

99 - A. Matsuyama , 2006
A dynamical coupled-channel model is presented for investigating the nucleon resonances in the meson production reactions induced by pions and photons. The model is based on an energy-independent Hamiltonian which is derived from a set of Lagrangians by using a unitary transformation method. By applying the projection operator techniques,we derive a set of coupled-channel equations which satisfy the unitarity conditions within the channel space spanned by the considered two-particle meson-baryon states and the three-particle $pipi N$ state. We present and explain in detail a numerical method based on a spline-function expansion for solving the resulting coupled-channel equations which contain logarithmically divergent one-particle-exchange driving terms resulted from the $pipi N$ unitarity cut. We show that this driving term can generate rapidly varying structure in the reaction amplitudes associated with the unstable particle channels. It also has large effects in determining the two-pion production cross sections. Our results indicate that cautions must be taken to interpret the $N^*$ parameters extracted from using models which do not include $pipi N$ cut effects.
310 - T. Leitner , O. Buss , U. Mosel 2009
We present the GiBUU model for neutrino nucleus scattering: assuming impulse approximation, this reaction is treated as a two step process. In the initial state step, the neutrinos interact with bound nucleons. In the final state step, the outgoing p articles of the initial reaction are propagated through the nucleus and undergo final state interactions. In this contribution, we focus on the validation of the initial and final state interaction treatment in GiBUU using experimental data for pion-nucleus, photon-nucleus and electron-nucleus scattering.
In this work the SMASH model is presented (Simulating Many Accelerated Strongly-Interacting Hadrons), a next-generation hadronic transport approach, which is designed to describe the non-equilibrium evolution of hadronic matter in heavy-ion collision s. We discuss first dilepton spectra obtained with SMASH in the few-GeV energy range of GSI/FAIR, where the dynamics of hadronic matter is dominated by the production and decay of various resonance states. In particular we show how electromagnetic transition form factors can emerge in a transport picture under the hypothesis of vector-meson dominance.
Inspired by the recent work by Dietrich et al., substantiating validity of the adiabatic assumption in coupled-channel calculations, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coup led-channel calculations on statically deformed nuclei. The generalization consists in adding the coupling of the ground state rotational band, deforming the potential by introducing appropriate quadrupole and hexadecupole deformation and correcting the OMP radius to preserve volume integral of the spherical OMP. We choose isotopes of three rare-earth elements (W, Ho, Gd), which are known to be nearly perfect rotors, to perform a consistent test of our conjecture on integrated cross sections as well as on angular distributions for elastic and inelastic neutron scattering. When doing this we employ the well-established Koning-Delaroche global spherical potential and experimentally determined deformations without any adjustments. We observe a dramatically improved agreement with experimental data compared to spherical optical model calculations. The effect of changing the OMP radius to preserve volume integral is moderate but visibly improves agreement at lower incident energies. We find that seven collective states need to be considered for the coupled-channel calculations to converge. Our results for total, elastic, inelastic, and capture cross sections, as well as elastic and inelastic angular distributions are in remarkable agreement with experimental data. This result confirms that the adiabatic assumption holds and can extend applicability of the global spherical OMP to rotational nuclei in the rare-earth region, essentially without any free parameter. Thus, quite reliable coupled-channel calculations can be performed on such nuclei even when the experimental data, and consequently a specific coupled-channel potential, are not available.
A transformation of supersymmetric quantum mechanics for N coupled channels is presented, which allows the introduction of up to N degenerate bound states without altering the remaining spectrum of the Hamiltonian. Phase equivalence of the Hamiltonia n can be restored by two successive supersymmetric transformations at the same energy. The method is successfully applied to the 3S1-3D1 coupled channels of the nucleon-nucleon system and a set of Moscow-type potentials is thus generated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا