ﻻ يوجد ملخص باللغة العربية
Budney recently constructed an operad that encodes splicing of knots. He further showed that the space of (long) knots is generated over this operad by the space of torus knots and hyperbolic knots, thus generalizing the satellite decomposition of knots from isotopy classes to the level of the space of knots. Infection by string links is a generalization of splicing from knots to links. We construct a colored operad that encodes string link infection. We prove that a certain subspace of the space of 2-component string links is generated over a suboperad of our operad by its subspace of prime links. This generalizes a result from joint work with Blair from isotopy classes of knots to the space of knots. Furthermore, all the relations in the monoid of 2-string links (as determined in our joint work with Blair) are captured by our infection operad.
A new topological operad is introduced, called the splicing operad. This operad acts on a broad class of spaces of self-embeddings N --> N where N is a manifold. The action of this operad on EC(j,M) (self embeddings R^j x M --> R^j x M with support i
In this paper we use 3-manifold techniques to illuminate the structure of the string link monoid. In particular, we give a prime decomposition theorem for string links on two components as well as give necessary conditions for string links to commute under the stacking operation.
Two string links are equivalent up to $2n$-moves and link-homotopy if and only if their all Milnor link-homotopy invariants are congruent modulo $n$. Moreover, the set of the equivalence classes forms a finite group generated by elements of order $n$
This paper is built on the following observation: the purity of the mixed Hodge structure on the cohomology of Browns moduli spaces is essentially equivalent to the freeness of the dihedral operad underlying the gravity operad. We prove these two fac
Recent algebraic structures of string theory, including homotopy Lie algebras, gravity algebras and Batalin-Vilkovisky algebras, are deduced from the topology of the moduli spaces of punctured Riemann spheres. The principal reason for these structure