ﻻ يوجد ملخص باللغة العربية
In this work, a method is described to extend the iterative Hirshfeld-I method, generally used for molecules, to periodic systems. The implementation makes use of precalculated pseudo-potential based charge density distributions, and it is shown that high quality results are obtained for both molecules and solids, such as ceria, diamond, and graphite. The use of such grids makes the implementation independent of the solid state or quantum chemical code used for studying the system. The extension described here allows for easy calculation of atomic charges and charge transfer in periodic and bulk systems.
The issues raised in the comment by T.A. Manz are addressed through the presentation of calculated atomic charges for NaF, NaCl, MgO, SrTiO$_3$ and La$_2$Ce$_2$O$_7$, using our previously presented method for calculating Hirshfeld-I charges in Solids
An outstanding challenge of theoretical electronic structure is the description of van der Waals (vdW) interactions in molecules and solids. Renewed interest in resolving this is in part motivated by the technological promise of layered systems inclu
Accurate and efficient calculations of absorption spectra of molecules and materials are essential for the understanding and rational design of broad classes of systems. Solving the Bethe-Salpeter equation (BSE) for electron-hole pairs usually yields
The MechElastic Python package evaluates the mechanical and elastic properties of bulk and 2D materials using the elastic coefficient matrix ($C_{ij}$) obtained from any ab-initio density-functional theory (DFT) code. The current version of this pack
Magnetic coercivity is often viewed to be lower in alloys with negligible (or zero) values of the anisotropy constant. However, this explains little about the dramatic drop in coercivity in FeNi alloys at a non-zero anisotropy value. Here, we develop