ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of a medium size Xe/TMA TPC instrumented with microbulk Micromegas, using low-energy $gamma$-rays

85   0   0.0 ( 0 )
 نشر من قبل Diego Gonzalez-Diaz
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NEXT-MM is a general-purpose high pressure (10 bar, $sim25$ l active volume) Xenon-based TPC, read out in charge mode with an 8 cm $times$8 cm-segmented 700 cm$^2$ plane (1152 ch) of the latest microbulk-Micromegas technology. It has been recently commissioned at University of Zaragoza as part of the R&D of the NEXT $0 ubetabeta$ experiment, although the experiments first stage is currently being built based on a SiPM/PMT-readout concept relying on electroluminescence. Around 2 million events were collected during the last months, stemming from the low energy $gamma$-rays emitted by a $^{241}$Am source when interacting with the Xenon gas ($epsilon$ = 26, 30, 59.5 keV). The localized nature of such events above atmospheric pressure, the long drift times, as well as the possibility to determine their production time from the associated $alpha$ particle in coincidence, allow the extraction of primordial properties of the TPC filling gas, namely the drift velocity, diffusion and attachment coefficients. In this work we focus on the little explored combination of Xe and trimethylamine (TMA) for which, in particular, such properties are largely unknown. This gas mixture offers potential advantages over pure Xenon when aimed at Rare Event Searches, mainly due to its Penning characteristics, wave-length shifting properties and reduced diffusion, and it is being actively investigated by our collaboration. The chamber is currently operated at 2.7 bar, as an intermediate step towards the envisaged 10 bar. We report here its performance as well as a first implementation of the calibration procedures that have allowed the extension of the previously reported energy resolution to the whole readout plane (10.6%FWHM@30keV).

قيم البحث

اقرأ أيضاً

83 - F.J. Iguaz 2011
A new Micromegas manufacturing technique, based on kapton etching technology, has been recently developed, improving the uniformity and stability of this kind of readouts. Excellent energy resolutions have been obtained, reaching 11% FWHM for the 5.9 keV photon peak of 55Fe source and 1.8% FWHM for the 5.5 MeV alpha peak of the 241Am source. The new detector has other advantages like its flexible structure, low material and high radio-purity. The two actual approaches of this technique will be described and the features of these readouts in argon-isobutane mixtures will be presented. Moreover, the low material present in the amplification gap makes these detectors approximate the Rose and Korff model for the avalanche amplification, which will be discussed for the same type of mixtures. Finally, we will present several applications of the microbulk technique.
We report the performance of a 10 atm Xenon/trimethylamine time projection chamber (TPC) for the detection of X-rays (30 keV) and gamma-rays (0.511-1.275 MeV) in conjunction with the accurate tracking of the associated electrons. When operated at suc h a high pressure and in 1%-admixtures, trimethylamine (TMA) endows Xenon with an extremely low electron diffusion (1.3 +-0.13 mm-sigma (longitudinal), 0.8 +-0.15 mm-sigma (transverse) along 1 m drift) besides forming a convenient Penning-Fluorescent mixture. The TPC, that houses 1.1 kg of gas in its active volume, operated continuously for 100 live-days in charge amplification mode. The readout was performed through the recently introduced microbulk Micromegas technology and the AFTER chip, providing a 3D voxelization of 8mm x 8mm x 1.2mm for approximately 10 cm/MeV-long electron tracks. This work was developed as part of the R&D program of the NEXT collaboration for future detector upgrades in the search of the 0bbnu decay in 136Xe, specifically those based on novel gas mixtures. Therefore we ultimately focus on the calorimetric and topological properties of the reconstructed MeV-electron tracks.
Micromegas is a type of micro-pattern gaseous detector currently under R&D for applications in rare event search experiments. Here we report the performance of a Micromegas structure constructed with a micromesh thermo-bonded to a readout plane, moti vated by its potential application in two-phase xenon detectors for dark matter and neutrinoless double beta decay experiments. The study is carried out in pure xenon at room temperature. Measurements with alpha particles from the Americium-241 source showed that gas gains larger than 200 can be obtained at xenon pressure up to 3 atm. Gamma rays down to 8 keV were observed with such a device.
We report the design, construction, and initial commissioning results of a large high pressure gaseous Time Projection Chamber (TPC) with Micromegas modules for charge readout. The detector vessel has an inner volume of about 600 L and an active volu me of 270 L. At 10 bar operating pressure, the active volume contains about 20 kg of xenon gas and can image charged particle tracks. Drift electrons are collected by the charge readout plane, which accommodates a tessellation of seven Micromegas modules. Each of the Micromegas covers a square of 20 cm by 20 cm. A new type of Microbulk Micromegas is chosen for this application due to its good gain uniformity and low radioactive contamination. Initial commissioning results with 1 Micromegas module running with 1 bar argon and isobutane gas mixture and 5 bar xenon and trimethylamine (TMA) gas mixture are reported. We also recorded extended background tracks from cosmic ray events and highlighted the unique tracking feature of this gaseous TPC.
The AMANDE facility produces monoenergetic neutron fields from 2 keV to 20 MeV for metrological purposes. To be considered as a reference facility, fluence and energy distributions of neutron fields have to be determined by primary measurement standa rds. For this purpose, a micro Time Projection Chamber is being developed to be dedicated to measure neutron fields with energy ranging from 8 keV up to 1 MeV. In this work we present simulations showing that such a detector, which allows the measurement of the ionization energy and the 3D reconstruction of the recoil nucleus, provides the determination of neutron energy and fluence of these neutron fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا