ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of high frequency modes of medium on an open quantum system

42   0   0.0 ( 0 )
 نشر من قبل Nirupam Dutta Dr.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a method to calculate the real time effective propagator of a generic open quantum system, immersed in a medium using a wave function based framework. The medium is characterised by a set of harmonic oscillators having a continuous span of frequencies. This technique has been applied to the Caldeira-Leggett model showing that high frequency modes of the medium do not contribute towards decay of the population of states of the open system. In fact, they cause a Rabi type oscillation. Moreover, our wave function based approach provides an excellent alternative to conventional formalisms involving the density matrix.



قيم البحث

اقرأ أيضاً

149 - V. A. Golovko 2011
The fact that superfluid helium always leaks out of an open container is usually explained by the phenomenon of wetting. In the present paper it is demonstrated that this explanation is unconvincing. The fact can be readily explained from the viewpoi nt of the interpretation of superfluidity proposed earlier by the author according to which superfluidity is an equilibrium state of liquid helium where the symmetry is spontaneously broken because of an intrinsic superflow. Experiments on the thickness of moving helium films that have given rise to much controversy are discussed as well. Some experiments concerning the phenomena considered in the paper are proposed.
65 - M. Tokieda , K. Hagino 2019
Couplings of a system to other degrees of freedom (that is, environmental degrees of freedom) lead to energy dissipation when the number of environmental degrees of freedom is large enough. Here we discuss quantal treatments for such energy dissipati on. To this end, we discuss two different time-dependent methods. One is to introduce an effective time-dependent Hamiltonian, which leads to a classical equation of motion as a relationship among expectation values of quantum operators. We apply this method to a heavy-ion fusion reaction and discuss the role of dissipation on the penetrability of the Coulomb barrier. The other method is to start with a Hamiltonian with environmental degrees of freedom and derive an equation which the system degree of freedom obeys. For this, we present a new efficient method to solve coupled-channels equations, which can be easily applied even when the dimension of the coupled-channels equations is huge.
We obtain the exact analytical solution for the continuously driven qutrit in the V and $Lambda$ configurations governed by the Lindblad master equation. We calculate the linear susceptibility in each system, determining regimes of transient gain wit hout inversion, and identify exact parameter values for superluminal, vanishing, and negative group velocity for the probe signal.
In order to simulate open quantum systems, many approaches (such as Hamiltonian-based solvers in dynamical mean-field theory) aim for a reproduction of a desired environment spectral density in terms of a discrete set of bath states, mimicking the op en system as a larger closed problem. Existing strategies to find a compressed representation of the environment for this purpose can be numerically demanding, or lack the compactness and systematic improvability required for an accurate description of the system propagator. We propose a method in which bath orbitals are constructed explicitly by an algebraic construction based on the Schmidt-decomposition of response wave functions, efficiently and systematically compressing the description of the full environment. These resulting bath orbitals are designed to directly reproduce the system Greens function, not hybridization, which allows for consideration of the relevant system energy scales to optimally model. This results in an accurate and efficient truncation of the environment, with applications in a wide range of numerical simulations of open quantum systems.
In this work, our prime objective is to study non-locality and long-range effects of two-body correlation using quantum entanglement from the various information-theoretic measures in the static patch of de Sitter space using a two-body Open Quantum System (OQS). The OQS is described by a system of two entangled atoms, surrounded by a thermal bath, which is modelled by a massless probe scalar field. Firstly, we partially trace over the bath field and construct the Gorini Kossakowski Sudarshan Lindblad (GSKL) master equation, which describes the time evolution of the reduced subsystem density matrix. This GSKL master equation is characterized by two components, these are-Spin chain interaction Hamiltonian and the Lindbladian. To fix the form of both of them, we compute the Wightman functions for probe massless scalar field. Using this result along with the large time equilibrium behaviour we obtain the analytical solution for reduced density matrix. Further using this solution we evaluate various entanglement measures, namely Von-Neumann entropy, R$e$nyi entropy, logarithmic negativity, entanglement of formation, concurrence and quantum discord for the two atomic subsystems on the static patch of De-Sitter space. Finally, we have studied the violation of Bell-CHSH inequality, which is the key ingredient to study non-locality in primordial cosmology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا