ترغب بنشر مسار تعليمي؟ اضغط هنا

Paramagnetic squeezing of QCD matter

313   0   0.0 ( 0 )
 نشر من قبل Gergely Endrodi
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We determine the magnetization of Quantum Chromodynamics (QCD) for several temperatures around and above the transition between the hadronic and the quark-gluon phases of strongly interacting matter. We obtain a paramagnetic response that increases in strength with the temperature. We argue that due to this paramagnetism, chunks of quark-gluon plasma produced in non-central heavy ion collisions should become elongated along the direction of the magnetic field. This anisotropy will then contribute to the elliptic flow v_2 observed in such collisions, in addition to the pressure gradient that is usually taken into account. We present a simple estimate for the magnitude of this new effect and a rough comparison to the effect due to the initial collision geometry. We conclude that the paramagnetic effect might have a significant impact on the value of v_2.



قيم البحث

اقرأ أيضاً

We determine the magnetic susceptibility of thermal QCD matter by means of first principles lattice simulations using staggered quarks with physical masses. A novel method is employed that only requires simulations at zero background field, thereby c ircumventing problems related to magnetic flux quantization. After a careful continuum limit extrapolation, diamagnetic behavior (negative susceptibility) is found at low temperatures and strong paramagnetism (positive susceptibility) at high temperatures. We revisit the decomposition of the magnetic susceptibility into spin- and orbital angular momentum-related contributions. The spin term -- related to the normalization of the photon lightcone distribution amplitude at zero temperature -- is calculated non-perturbatively and extrapolated to the continuum limit. Having access to both the full magnetic susceptibility and the spin term, we calculate the orbital angular momentum contribution for the first time. The results reveal the opposite of what might be expected based on a free fermion picture. We provide a simple parametrization of the temperature- and magnetic field-dependence of the QCD equation of state that can be used in phenomenological studies.
765 - Gert Aarts 2013
A brief overview of the QCD phase diagram at nonzero temperature and density is provided. It is explained why standard lattice QCD techniques are not immediately applicable for its determination, due to the sign problem. We then discuss a selection o f recent lattice approaches that attempt to evade the sign problem and classify them according to the underlying principle: constrained simulations (density of states, histograms), holomorphicity (complex Langevin, Lefschetz thimbles), partial summations (clusters, subsets, bags) and change in integration order (strong coupling, dual formulations).
A three-dimensional effective lattice theory of Polyakov loops is derived from QCD by expansions in the fundamental character of the gauge action, u, and the hopping parameter, kappa, whose action is correct to kappa^n u^m with n+m=4. At finite baryo n density, the effective theory has a sign problem which meets all criteria to be simulated by complex Langevin as well as by Monte Carlo on small volumes. The theory is valid for the thermodynamics of heavy quarks, where its predictions agree with simulations of full QCD at zero and imaginary chemical potential. In its region of convergence, it is moreover amenable to perturbative calculations in the small effective couplings. In this work we study the challenging cold and dense regime. We find unambiguous evidence for the nuclear liquid gas transition once the baryon chemical potential approaches the baryon mass, and calculate the nuclear equation of state. In particular, we find a negative binding energy per nucleon causing the condensation, whose absolute value decreases exponentially as mesons get heavier. For decreasing meson mass, we observe a first order liquid gas transition with an endpoint at some finite temperature, as well as gap between the onset of isospin and baryon condensation.
After combined character and hopping expansions and integration over the spatial gauge links, lattice QCD reduces to a three-dimensional $SU(3)$ Polyakov loop model with complicated interactions. A simple truncation of the effective theory is valid f or heavy quarks on reasonably fine lattices and can be solved by linked cluster expansion in its effective couplings. This was used ealier to demonstrate the onset transition to baryon matter in the cold and dense regime. Repeating these studies for general $N_c$, one finds that for large $N_c$ the onset transition becomes first-order, and the pressure scales as $psim N_c$ through three consecutive orders in the hoppoing expansion. These features are consistent with the formal definition of quarkyonic matter given in the literature. We discuss the implications for $N_c=3$ and physical QCD.
211 - Sayantan Sharma 2021
QCD matter at finite temperature and density is a subject that has witnessed very impressive theoretical developments in the recent years. In this review I will discuss some new insights on the microscopic degrees of freedom of the QCD medium near th e chiral crossover transition from lattice QCD. Latest high precision lattice data on the fluctuations and correlations between conserved charges like the baryon number, strangeness can help us to understand and distinguish between different models of interacting hadrons. Furthermore, the latest constraints on the location of the critical end-point and the curvature of the critical line will be discussed. In the later part of this review I will discuss about the insights on the thermal nature of the medium created in heavy ion collision experiments that have come from the theoretical analysis of the particle yields, and to what extent the lattice data on correlations and fluctuations of conserved charges can give us any information about the fireball at freezeout.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا