ترغب بنشر مسار تعليمي؟ اضغط هنا

Developments in lattice QCD for matter at high temperature and density

354   0   0.0 ( 0 )
 نشر من قبل Gert Aarts
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف Gert Aarts




اسأل ChatGPT حول البحث

A brief overview of the QCD phase diagram at nonzero temperature and density is provided. It is explained why standard lattice QCD techniques are not immediately applicable for its determination, due to the sign problem. We then discuss a selection of recent lattice approaches that attempt to evade the sign problem and classify them according to the underlying principle: constrained simulations (density of states, histograms), holomorphicity (complex Langevin, Lefschetz thimbles), partial summations (clusters, subsets, bags) and change in integration order (strong coupling, dual formulations).



قيم البحث

اقرأ أيضاً

211 - Sayantan Sharma 2021
QCD matter at finite temperature and density is a subject that has witnessed very impressive theoretical developments in the recent years. In this review I will discuss some new insights on the microscopic degrees of freedom of the QCD medium near th e chiral crossover transition from lattice QCD. Latest high precision lattice data on the fluctuations and correlations between conserved charges like the baryon number, strangeness can help us to understand and distinguish between different models of interacting hadrons. Furthermore, the latest constraints on the location of the critical end-point and the curvature of the critical line will be discussed. In the later part of this review I will discuss about the insights on the thermal nature of the medium created in heavy ion collision experiments that have come from the theoretical analysis of the particle yields, and to what extent the lattice data on correlations and fluctuations of conserved charges can give us any information about the fireball at freezeout.
We delineate equilibrium phase structure and topological charge distribution of dense two-colour QCD at low temperature by using a lattice simulation with two-flavour Wilson fermions that has a chemical potential $mu$ and a diquark source $j$ incorpo rated. We systematically measure the diquark condensate, the Polyakov loop, the quark number density and the chiral condensate with improved accuracy and $jto0$ extrapolation over earlier publications; the known qualitative features of the low temperature phase diagram, which is composed of the hadronic, Bose-Einstein condensed (BEC) and BCS phases, are reproduced. In addition, we newly find that around the boundary between the hadronic and BEC phases, nonzero quark number density occurs even in the hadronic phase in contrast to the prediction of the chiral perturbation theory (ChPT), while the diquark condensate approaches zero in a manner that is consistent with the ChPT prediction. At the highest $mu$, which is of order the inverse of the lattice spacing, all the above observables change drastically, which implies a lattice artifact. Finally, at temperature of order $0.45T_c$, where $T_c$ is the chiral transition temperature at zero chemical potential, the topological susceptibility is calculated from a gradient-flow method and found to be almost constant for all the values of $mu$ ranging from the hadronic to BCS phase. This is a contrast to the case of $0.89T_c$ in which the topological susceptibility becomes small as the hadronic phase changes into the quark-gluon plasma phase.
132 - Gert Aarts 2015
Some recent developments to handle the numerical sign problem in QCD and related theories at nonzero density are reviewed. In this contribution I focus on changing the integration order to soften the severity of the sign problem, the density of state s, and the extension into the complex plane (complex Langevin dynamics and Lefshetz thimbles).
137 - H. Saito , S. Ejiri , S. Aoki 2013
We study the phase structure of lattice QCD with heavy quarks at finite temperature and density by a histogram method. We determine the location of the critical point at which the first-order deconfining transition in the heavy-quark limit turns into a crossover at intermediate quark masses through a change of the shape of the histogram under variation of coupling parameters. We estimate the effect of the complex phase factor which causes the sign problem at finite density, and show that, in heavy-quark QCD, the effect is small around the critical point. We determine the critical surface in 2+1 flavor QCD in the heavy-quark region at all values of the chemical potential mu including mu=infty.
We compute charmonium spectral functions in 2-flavor QCD on anisotropic lattices using the maximum entropy method. Our results suggest that the S-waves (J/psi and eta_c) survive up to temperatures close to 2Tc, while the P-waves (chi_c0 and chi_c1) melt away below 1.2Tc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا