ترغب بنشر مسار تعليمي؟ اضغط هنا

Exponential of a Matrix, a Nonlinear Problem and Quantum Gates

156   0   0.0 ( 0 )
 نشر من قبل Willi-Hans Steeb WHS
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe solutions of the matrix equation $exp(z(A-I_n))=A$, where $z in {mathbb C}$. Applications in quantum computing are given. Both normal and nonnormal matrices are studied. For normal matrices, the Lambert W-function plays a central role.



قيم البحث

اقرأ أيضاً

We consider the spatial central force problem with a real analytic potential. We prove that for all analytic potentials, but the Keplerian and the Harmonic ones, the Hamiltonian fulfills a nondegeneracy property needed for the applicability of Nekhor oshevs theorem. We deduce stability of the actions over exponentially long times when the system is subject to arbitrary analytic perturbation. The case where the central system is put in interaction with a slow system is also studied and stability over exponentially long time is proved.
We propose to analyse the statistical properties of a sequence of vectors using the spectrum of the associated Gram matrix. Such sequences arise e.g. by the repeated action of a deterministic kicked quantum dynamics on an initial condition or by a ra ndom process. We argue that, when the number of time-steps, suitably scaled with respect to $hbar$, increases, the limiting eigenvalue distribution of the Gram matrix reflects the possible quantum chaoticity of the original system as it tends to its classical limit. This idea is subsequently applied to study the long-time properties of sequences of random vectors at the time scale of the dimension of the Hilbert space of available states.
The iterative method of Sinkhorn allows, starting from an arbitrary real matrix with non-negative entries, to find a so-called scaled matrix which is doubly stochastic, i.e. a matrix with all entries in the interval (0, 1) and with all line sums equa l to 1. We conjecture that a similar procedure exists, which allows, starting from an arbitrary unitary matrix, to find a scaled matrix which is unitary and has all line sums equal to 1. The existence of such algorithm guarantees a powerful decomposition of an arbitrary quantum circuit.
An approximate exponential quantum projection filtering scheme is developed for a class of open quantum systems described by Hudson- Parthasarathy quantum stochastic differential equations, aiming to reduce the computational burden associated with on line calculation of the quantum filter. By using a differential geometric approach, the quantum trajectory is constrained in a finite-dimensional differentiable manifold consisting of an unnormalized exponential family of quantum density operators, and an exponential quantum projection filter is then formulated as a number of stochastic differential equations satisfied by the finite-dimensional coordinate system of this manifold. A convenient design of the differentiable manifold is also presented through reduction of the local approximation errors, which yields a simplification of the quantum projection filter equations. It is shown that the computational cost can be significantly reduced by using the quantum projection filter instead of the quantum filter. It is also shown that when the quantum projection filtering approach is applied to a class of open quantum systems that asymptotically converge to a pure state, the input-to-state stability of the corresponding exponential quantum projection filter can be established. Simulation results from an atomic ensemble system example are provided to illustrate the performance of the projection filtering scheme. It is expected that the proposed approach can be used in developing more efficient quantum control methods.
169 - Dustin Keys , Jan Wehr 2019
The paper studies a class of quantum stochastic differential equations, modeling an interaction of a system with its environment in the quantum noise approximation. The space representing quantum noise is the symmetric Fock space over L^2(R_+). Using the isomorphism of this space with the space of square-integrable functionals of the Poisson process, the equations can be represented as classical stochastic differential equations, driven by Poisson processes. This leads to a discontinuous dynamical state reduction which we compare to the Ghirardi-Rimini-Weber model. A purely quantum object, the norm process, is found which plays the role of an observer (in the sense of Everett [H. Everett III, Reviews of modern physics, 29.3, 454, (1957)]), encoding all events occurring in the system space. An algorithm introduced by Dalibard et al [J. Dalibard, Y. Castin, and K. M{o}lmer, Physical review letters, 68.5, 580 (1992)] to numerically solve quantum master equations is interpreted in the context of unravellings and the trajectories of expected values of system observables are calculated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا