ترغب بنشر مسار تعليمي؟ اضغط هنا

Constructive Discrepancy Minimization by Walking on The Edges

268   0   0.0 ( 0 )
 نشر من قبل Raghu Meka
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Minimizing the discrepancy of a set system is a fundamental problem in combinatorics. One of the cornerstones in this area is the celebrated six standard deviations result of Spencer (AMS 1985): In any system of n sets in a universe of size n, there always exists a coloring which achieves discrepancy 6sqrt{n}. The original proof of Spencer was existential in nature, and did not give an efficient algorithm to find such a coloring. Recently, a breakthrough work of Bansal (FOCS 2010) gave an efficient algorithm which finds such a coloring. His algorithm was based on an SDP relaxation of the discrepancy problem and a clever rounding procedure. In this work we give a new randomized algorithm to find a coloring as in Spencers result based on a restricted random walk we call Edge-Walk. Our algorithm and its analysis use only basic linear algebra and is truly constructive in that it does not appeal to the existential arguments, giving a new proof of Spencers theorem and the partial coloring lemma.



قيم البحث

اقرأ أيضاً

We study the online discrepancy minimization problem for vectors in $mathbb{R}^d$ in the oblivious setting where an adversary is allowed fix the vectors $x_1, x_2, ldots, x_n$ in arbitrary order ahead of time. We give an algorithm that maintains $O(s qrt{log(nd/delta)})$ discrepancy with probability $1-delta$, matching the lower bound given in [Bansal et al. 2020] up to an $O(sqrt{log log n})$ factor in the high-probability regime. We also provide results for the weighted and multi-col
In the stochastic online vector balancing problem, vectors $v_1,v_2,ldots,v_T$ chosen independently from an arbitrary distribution in $mathbb{R}^n$ arrive one-by-one and must be immediately given a $pm$ sign. The goal is to keep the norm of the discr epancy vector, i.e., the signed prefix-sum, as small as possible for a given target norm. We consider some of the most well-known problems in discrepancy theory in the above online stochastic setting, and give algorithms that match the known offline bounds up to $mathsf{polylog}(nT)$ factors. This substantially generalizes and improves upon the previous results of Bansal, Jiang, Singla, and Sinha (STOC 20). In particular, for the Koml{o}s problem where $|v_t|_2leq 1$ for each $t$, our algorithm achieves $tilde{O}(1)$ discrepancy with high probability, improving upon the previous $tilde{O}(n^{3/2})$ bound. For Tusn{a}dys problem of minimizing the discrepancy of axis-aligned boxes, we obtain an $O(log^{d+4} T)$ bound for arbitrary distribution over points. Previous techniques only worked for product distributions and gave a weaker $O(log^{2d+1} T)$ bound. We also consider the Banaszczyk setting, where given a symmetric convex body $K$ with Gaussian measure at least $1/2$, our algorithm achieves $tilde{O}(1)$ discrepancy with respect to the norm given by $K$ for input distributions with sub-exponential tails. Our key idea is to introduce a potential that also enforces constraints on how the discrepancy vector evolves, allowing us to maintain certain anti-concentration properties. For the Banaszczyk setting, we further enhance this potential by combining it with ideas from generic chaining. Finally, we also extend these results to the setting of online multi-color discrepancy.
A graph drawn in the plane with n vertices is k-fan-crossing free for k > 1 if there are no k+1 edges $g,e_1,...e_k$, such that $e_1,e_2,...e_k$ have a common endpoint and $g$ crosses all $e_i$. We prove a tight bound of 4n-8 on the maximum number of edges of a 2-fan-crossing free graph, and a tight 4n-9 bound for a straight-edge drawing. For k > 2, we prove an upper bound of 3(k-1)(n-2) edges. We also discuss generalizations to monotone graph properties.
We develop an approximation algorithm for the partition function of the ferromagnetic Potts model on graphs with a small-set expansion condition, and as a step in the argument we give a graph partitioning algorithm with expansion and minimum degree c onditions on the subgraphs induced by each part. These results extend previous work of Jenssen, Keevash, and Perkins (2019) on the Potts model and related problems in expander graphs, and of Oveis Gharan and Trevisan (2014) on partitioning into expanders.
A forbidden transition graph is a graph defined together with a set of permitted transitions i.e. unordered pair of adjacent edges that one may use consecutively in a walk in the graph. In this paper, we look for the smallest set of transitions neede d to be able to go from any vertex of the given graph to any other. We prove that this problem is NP-hard and study approximation algorithms. We develop theoretical tools that help to study this problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا